11.已知角θ的終邊上一點(diǎn)P($\sqrt{2}$,m),且sinθ=$\frac{{\sqrt{3}}}{3}$m,求cosθ.

分析 求出OP的距離,利用sinθ=$\frac{{\sqrt{3}}}{3}$m,求出m的值,對(duì)m分類討論,求出相應(yīng)的cosθ的值.

解答 解:由題意,r=$\sqrt{2+{m}^{2}}$,
∴$\frac{m}{\sqrt{2+{m}^{2}}}$=$\frac{{\sqrt{3}}}{3}$m,
若m=0,則cosθ=1.
若m≠0,則m=±1.cosθ=$\frac{\sqrt{2}}{\sqrt{3}}$=$\frac{\sqrt{6}}{3}$.

點(diǎn)評(píng) 本題是中檔題,考查任意角的三角函數(shù)的定義,分類討論的思想的應(yīng)用,考查計(jì)算能力,常考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.執(zhí)行如圖所示的程序框圖,則輸出的S值是( 。
A.$\frac{2}{3}$B.$\frac{3}{2}$C.-1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且右焦點(diǎn)F到左頂點(diǎn)A的距離為4+2$\sqrt{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓C上位于x軸上方的點(diǎn),直線PA交y軸于點(diǎn)M,過點(diǎn)F作MF的垂線,交y軸于點(diǎn)N.
(i)當(dāng)直線PA的斜率為$\frac{1}{2}$時(shí),求△FMN的外接圓的方程;
(ii)設(shè)直線AN交橢圓C于另一點(diǎn)Q,求△APQ的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.等比數(shù)列{an}的前n項(xiàng)和為Sn,已知對(duì)任意的n∈N*,點(diǎn)(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù))的圖象上.
(1)求r的值;
(2)當(dāng)b=2時(shí),記${b_n}=2({log_3}{a_n}+1)(n∈{N^*})$,證明:對(duì)任意的n∈N*,不等式$\frac{{{b_1}+1}}{b_1}•\frac{{{b_2}+1}}{b_2}•…•\frac{{{b_n}+1}}{b_n}>\sqrt{n+1}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.點(diǎn)M為棱長(zhǎng)是$2\sqrt{2}$的正方體ABCD-A1B1C1D1的內(nèi)切球O球面上的動(dòng)點(diǎn),點(diǎn)N為B1C1的中點(diǎn),若滿足DM⊥BN,則動(dòng)點(diǎn)M的軌跡的長(zhǎng)度為$\frac{{4\sqrt{10}π}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x3-3x,若對(duì)于區(qū)間[-3,2]上任意的x1,x2都有|f(x1)-f(x2)|≤t,則實(shí)數(shù)t的最小值是20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)$z=\frac{5}{2-i}$(i是復(fù)數(shù)單位),則復(fù)數(shù)z為( 。
A.2+iB.-2+iC.-2-iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知球的直徑SC=4,A、B 是該球面上的兩點(diǎn)且AB=2$\sqrt{2}$,∠ASC=30°,∠SCB=45°,則三棱錐S-ABC的體積為(  )
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{2}{3}\sqrt{3}$D.$\frac{4}{3}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.學(xué)校舉行班級(jí)籃球賽,某名運(yùn)動(dòng)員每場(chǎng)比賽得分記錄的莖葉圖如下:
(1)求該運(yùn)動(dòng)員得分的中位數(shù)和平均數(shù);
(2)估計(jì)該運(yùn)動(dòng)員每場(chǎng)得分超過10分的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案