【題目】根據(jù)調(diào)查,某學(xué)校開設(shè)了“街舞”、“圍棋”、“武術(shù)”三個社團(tuán),三個社團(tuán)參加的人數(shù)如下表所示:
社團(tuán) | 街舞 | 圍棋 | 武術(shù) |
人數(shù) | 320 | 240 | 200 |
為調(diào)查社團(tuán)開展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個容量為n的樣本,已知從“圍棋”社團(tuán)抽取的同學(xué)比從“街舞”社團(tuán)抽取的同學(xué)少2人.
(1)求三個社團(tuán)分別抽取了多少同學(xué);
(2)若從“圍棋”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動監(jiān)督的職務(wù),已知“圍棋”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率。
【答案】(1)8,6,5(2).
【解析】
(1)設(shè)抽樣比為x,則由分層抽樣可知,“街舞”、“圍棋”、“武術(shù)”三個社團(tuán)抽取的人數(shù)分別為320x、240x、200x.由題意列出方程,能求出“街舞”、“圍棋”、“武術(shù)”三個社團(tuán)抽取的人數(shù).
(2)從“圍棋”社團(tuán)抽取了6人,其中2位女生記為A,B,4位男生記為C,D,E,F,利用列舉法能求出從這6位同學(xué)中任選2人,至少有1名女生被選中的概率.
(1)設(shè)抽樣比為x,則由分層抽樣可知,“街舞”、“圍棋”、“武術(shù)”三個社團(tuán)抽取的人數(shù)分別為320x、240x、200x.
則由題意得320x﹣240x=2,解得x.
故“街舞”、“圍棋”、“武術(shù)”三個社團(tuán)抽取的人數(shù)分別為3208、2406、2005.
(2) 由(1)知,從“圍棋”社團(tuán)抽取的同學(xué)為6人,
其中2位女生記為;4位男生記為;
從中選出2人擔(dān)任該社團(tuán)活動監(jiān)督的職務(wù)有15種不同的結(jié)果,
至少有1名女同學(xué)被選為監(jiān)督職務(wù)有9種不同的結(jié)果,
所以至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車的投放,方便了市民短途出行,被譽(yù)為中國“新四大發(fā)明”之一.某市為研究單車用戶與年齡的相關(guān)程度,隨機(jī)調(diào)查了100位成人市民,統(tǒng)計數(shù)據(jù)如下:
不小于40歲 | 小于40歲 | 合計 | |
單車用戶 | 12 | y | m |
非單車用戶 | x | 32 | 70 |
合計 | n | 50 | 100 |
(1)求出列聯(lián)表中字母x、y、m、n的值;
(2)①從此樣本中,對單車用戶按年齡采取分層抽樣的方法抽出5人進(jìn)行深入調(diào)研,其中不小于40歲的人應(yīng)抽多少人?
②從獨(dú)立性檢驗角度分析,能否有以上的把握認(rèn)為該市成人市民是否為單車用戶與年齡是否小于40歲有關(guān).
下面臨界值表供參考:
P() | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個有限整數(shù)數(shù)列稱為一個“好數(shù)列”,是指對每個均使得等式成立.證明:對任何兩個整數(shù),都存在一個自然數(shù)和一個“好數(shù)列”,滿足.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某景區(qū)內(nèi)有兩條道路、,現(xiàn)計劃在上選擇一點(diǎn),新建道路,并把所在的區(qū)域改造成綠化區(qū)域.已知,,.若綠化區(qū)域改造成本為萬元,新建道路成本為萬元.
(1)①設(shè),寫出該計劃所需總費(fèi)用的表達(dá)式,并寫出的范圍;
②設(shè),寫出該計劃所需總費(fèi)用的表達(dá)式,并寫出的范圍;
(2)從上面兩個函數(shù)關(guān)系中任選一個,求點(diǎn)在何處時改造計劃的總費(fèi)用最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“瓷、都、文、明”四個字,有放回地從中任取一張卡片,將三次抽取后“瓷”“都”兩個字都取到記為事件,用隨機(jī)模擬的方法估計事件發(fā)生的概率.利用電腦隨機(jī)產(chǎn)生整數(shù)0,1,2,3四個隨機(jī)數(shù),分別代表“瓷、都、文、明”這四個字,以每三個隨機(jī)數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下18組隨機(jī)數(shù):
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估計事件發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)為研究“網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響”作了一次調(diào)查,共調(diào)查了50名同學(xué),其中男生26人,有8人不喜歡玩游戲,而調(diào)查的女生中有9人喜歡玩游戲.
(1)根據(jù)以上數(shù)據(jù)完成2×2的列聯(lián)表;
(2)根據(jù)以上數(shù)據(jù),在犯錯誤的概率不超過0.025的前提下,能否認(rèn)為“喜歡玩電腦游戲與性別有關(guān)系”?
男生 | 女生 | 總計 | |
喜歡玩游戲 | |||
不喜歡玩游戲 | |||
總計 |
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人進(jìn)行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局?jǐn)?shù)多者贏得比賽,假設(shè)每局甲獲勝的概率為,乙獲勝的概率為,各局比賽結(jié)果相互獨(dú)立.
求甲在4局以內(nèi)(含4局)贏得比賽的概率;
記為比賽決出勝負(fù)時的總局?jǐn)?shù),求的分布列和均值(數(shù)學(xué)期望).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆中國國際進(jìn)口博覽會期間,甲、乙、丙三家中國企業(yè)都有意向購買同一種型號的機(jī)床設(shè)備,他們購買該機(jī)床設(shè)備的概率分別為,且三家企業(yè)的購買結(jié)果相互之間沒有影響,則三家企業(yè)中恰有1家購買該機(jī)床設(shè)備的概率是
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,的展開式的各二項式系數(shù)的和等于128,
(1)求的值;
(2)求的展開式中的有理項;
(3)求的展開式中系數(shù)最大的項和系數(shù)最小的項.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com