【題目】某同學(xué)為研究網(wǎng)絡(luò)游戲?qū)Ξ?dāng)代青少年的影響作了一次調(diào)查,共調(diào)查了50名同學(xué),其中男生26人,有8人不喜歡玩游戲,而調(diào)查的女生中有9人喜歡玩游戲.

1)根據(jù)以上數(shù)據(jù)完成2×2的列聯(lián)表;

2)根據(jù)以上數(shù)據(jù),在犯錯(cuò)誤的概率不超過0.025的前提下,能否認(rèn)為喜歡玩電腦游戲與性別有關(guān)系?

男生

女生

總計(jì)

喜歡玩游戲

不喜歡玩游戲

總計(jì)

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

【答案】1)見解析;(2)能.

【解析】

1)根據(jù)題意結(jié)合列聯(lián)表的概念,直接填表即可得解;

2)由題意計(jì)算出,與5.024進(jìn)行比較,即可得解.

1)由題意,完成列聯(lián)表:

男生

女生

總計(jì)

喜歡玩游戲

18

9

27

不喜歡玩游戲

8

15

23

總計(jì)

26

24

50

2)由題意,

所以在犯錯(cuò)誤的概率不超過0.025的前提下,能認(rèn)為喜歡玩電腦游戲與性別有關(guān)系”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列事件:①任取這三條線段,這三條線段恰好組成直角三角形;②從一個(gè)三角形的三個(gè)頂點(diǎn)各任畫一條射線,這三條射線交于一點(diǎn);③實(shí)數(shù)都不為,但;④明年1228日的最高氣溫高于今年1228日的最高氣溫.其中為隨機(jī)事件的是(

A.①②③④B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的中點(diǎn),

(1)求證: AC1//平面CDB1

(2)求二面角C1-AB-C的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列選項(xiàng)中,說法正確的是(

A.的否定是

B.若向量滿足 ,則的夾角為鈍角

C.,則

D.的必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)調(diào)查,某學(xué)校開設(shè)了“街舞”、“圍棋”、“武術(shù)”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如下表所示:

社團(tuán)

街舞

圍棋

武術(shù)

人數(shù)

320

240

200

為調(diào)查社團(tuán)開展情況,學(xué)校社團(tuán)管理部采用分層抽樣的方法從中抽取一個(gè)容量為n的樣本,已知從“圍棋”社團(tuán)抽取的同學(xué)比從“街舞”社團(tuán)抽取的同學(xué)少2人.

(1)求三個(gè)社團(tuán)分別抽取了多少同學(xué);

(2)若從“圍棋”社團(tuán)抽取的同學(xué)中選出2人擔(dān)任該社團(tuán)活動(dòng)監(jiān)督的職務(wù),已知“圍棋”社團(tuán)被抽取的同學(xué)中有2名女生,求至少有1名女同學(xué)被選為監(jiān)督職務(wù)的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校有n個(gè)班(n為給定正整數(shù)),且每班的男生與女生人數(shù)至多相差1.現(xiàn)該學(xué)校進(jìn)行乒乓球比賽規(guī)則如下:同一班的選手之間不比賽,不同班的每?jī)擅x手都比賽一場(chǎng)我們稱在同性別選手間的比賽為同打,異性別選手間的比賽為異打若同打場(chǎng)數(shù)與異打場(chǎng)數(shù)至多相差1,求有奇數(shù)名學(xué)生的班級(jí)至多有多少個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取名同學(xué)(男),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

幾何題

代數(shù)題

總計(jì)

男同學(xué)

女同學(xué)

總計(jì)

(1)能否據(jù)此判斷有的把握認(rèn)為視覺和空間能力與性別有關(guān)?

(2)經(jīng)過多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在分鐘,乙每次解答一道幾何題所用的時(shí)間在分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

(3)現(xiàn)從選擇做幾何的名女生中任意抽取兩人對(duì)她們的答題情況進(jìn)行全程研究,記甲、乙兩女生被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的方程為,點(diǎn)為坐標(biāo)原點(diǎn),點(diǎn),的坐標(biāo)分別為,,直線的斜率為.

1)求橢圓的方程;

2)若斜率為的直線交橢圓兩點(diǎn),交軸于點(diǎn),問是否存在實(shí)數(shù)使得以為直徑的圓恒過點(diǎn)?若存在,求的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方體ABCDA1B1C1D1的棱長(zhǎng)為1,E,F分別是棱AD,B1C1上的動(dòng)點(diǎn),設(shè)AEλ,B1Fμ若平面BEF與正方體的截面是五邊形,則λμ的取值范圍是________

查看答案和解析>>

同步練習(xí)冊(cè)答案