【題目】已知雙曲線 的兩條漸近線與拋物線的準(zhǔn)線分別交于,兩點(diǎn).若雙曲線的離心率為,的面積為,為坐標(biāo)原點(diǎn),則拋物線的焦點(diǎn)坐標(biāo)為 ( )
A. B. C. D.
【答案】B
【解析】
求出雙曲線雙曲線(a>0,b>0)的漸近線方程與拋物線y2=2px(p>0)的準(zhǔn)線方程,進(jìn)而求出A,B兩點(diǎn)的坐標(biāo),再由雙曲線的離心率為2,△AOB的面積為,列出方程,由此方程求出p的值.
∵雙曲線(a>0,b>0),
∴雙曲線的漸近線方程是y=±x
又拋物線y2=2px(p>0)的準(zhǔn)線方程是x,
故A,B兩點(diǎn)的縱坐標(biāo)分別是y=±,
又由雙曲線的離心率為2,所以2,則,
A,B兩點(diǎn)的縱坐標(biāo)分別是y=±,即=,
又△AOB的面積為,且軸,
∴,得p=2.
拋物線的焦點(diǎn)坐標(biāo)為:(1,0)
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列的前項(xiàng)和為,且(是常數(shù),),.
(1)求的值及數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合,其中, , . 表示中所有不同值的個(gè)數(shù).
()設(shè)集合, ,分別求和.
()若集合,求證: .
()是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax+b,x∈[-1,1],a,b∈R,且是常數(shù).
(1)若a是從-2,-1,0,1,2五個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求函數(shù)y=f(x)為奇函數(shù)的概率;
(2)若a是從區(qū)間[-2,2]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求函數(shù)y=f(x)有零點(diǎn)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,離心率為,過的直線與橢圓交于兩點(diǎn),且的周長為8.
(1)求橢圓的方程;
(2)直線過點(diǎn),且與橢圓交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(理)設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率.
(2)求ξ的分布列和數(shù)學(xué)期望.
(3)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2021年我省將實(shí)施新高考,新高考“依據(jù)統(tǒng)一高考成績、高中學(xué)業(yè)水平考試成績,參考高中學(xué)生綜合素質(zhì)評價(jià)信息”進(jìn)行人才選拔。我校2018級高一年級一個(gè)學(xué)習(xí)興趣小組進(jìn)行社會實(shí)踐活動,決定對某商場銷售的商品A進(jìn)行市場銷售量調(diào)研,通過對該商品一個(gè)階段的調(diào)研得知,發(fā)現(xiàn)該商品每日的銷售量(單位:百件)與銷售價(jià)格(元/件)近似滿足關(guān)系式,其中為常數(shù)已知銷售價(jià)格為3元/件時(shí),每日可售出該商品10百件。
(1)求函數(shù)的解析式;
(2)若該商品A的成本為2元/件,根據(jù)調(diào)研結(jié)果請你試確定該商品銷售價(jià)格的值,使該商場每日銷售該商品所獲得的利潤(單位:百元)最大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】光對物體的照度與光的強(qiáng)度成正比,比例系數(shù)為,與光源距離的平方成反比,比例系數(shù)為均為正常數(shù)如圖,強(qiáng)度分別為8,1的兩個(gè)光源A,B之間的距離為10,物體P在連結(jié)兩光源的線段AB上不含A,若物體P到光源A的距離為x.
試將物體P受到A,B兩光源的總照度y表示為x的函數(shù),并指明其定義域;
當(dāng)物體P在線段AB上何處時(shí),可使物體P受到A,B兩光源的總照度最?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com