分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可.
解答 解:f′(x)=3x2-3x=3x(x-1),
令f′(x)>0,解得:x>1或x<0,
令f′(x)<0,解得:0<x<1,
故f(x)在[-2,0)遞增,在(0,1)遞減,在(1,2]遞增,
而f(-2)=-9,f(0)=5,f(1)=$\frac{9}{2}$,f(2)=7,
故函數(shù)f(x)max=7,f(x)min=f(-2)=-9.
點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | “昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理. | |
B. | “在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c則a∥c,將此結(jié)論放到空間中也成立”此推理屬于合情推理. | |
C. | “a≤0”是“函數(shù)f(x)=ax+lnx存在極值”的必要不充分條件. | |
D. | 若$x∈(0\;,\;\;\frac{π}{2}]$,則$sinx+\frac{2}{sinx}$的最小值為$2\sqrt{2}$. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2 | C. | 3 | D. | $2\sqrt{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com