5.求函數(shù)$f(x)={x^3}-\frac{3}{2}{x^2}+5$在區(qū)間[-2,2]上的最大值與最小值.

分析 求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的最值即可.

解答 解:f′(x)=3x2-3x=3x(x-1),
令f′(x)>0,解得:x>1或x<0,
令f′(x)<0,解得:0<x<1,
故f(x)在[-2,0)遞增,在(0,1)遞減,在(1,2]遞增,
而f(-2)=-9,f(0)=5,f(1)=$\frac{9}{2}$,f(2)=7,
故函數(shù)f(x)max=7,f(x)min=f(-2)=-9.

點評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知拋物線C:y2=2px(p>0)的焦點F與橢圓$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{8}$=$\frac{1}{2}$的一個焦點重合,直線l過點A(4,0)且與拋物線交于P、Q兩點.
(1)求p的值;
(2)若$\overrightarrow{FP}$+$\overrightarrow{PQ}$=$\overrightarrow{FR}$,試求動點R的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.下列命題中
①A+B=$\frac{π}{2}$是sinA=cosB成立的充分不必要條件.
②${(\frac{1}{{\sqrt{x}}}-x)^6}$的展開式中的常數(shù)項是第4項.
③在數(shù)列{an}中,a1=2,Sn是其前n項和且滿足Sn+1=$\frac{1}{2}{S_n}$+2,則數(shù)列{an}為等比數(shù)列.
④設(shè)過函數(shù)f(x)=x2-x(-1≤x≤1)圖象上任意一點的切線的斜率為K,則K的取值范圍是(-3,1)
把你認(rèn)為正確的命題的序號填在橫線上①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.由正整數(shù)組成的一組數(shù)據(jù)x1,x2,x3,x4,其平均數(shù)和中位數(shù)都是2,且標(biāo)準(zhǔn)差等于$\frac{{\sqrt{2}}}{2}$,則這組數(shù)據(jù)為1,2,2,3. (從小到大排列)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知過點(0,-2$\sqrt{3}$),斜率為$\sqrt{3}$的直線l過橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點,橢圓C的中心關(guān)于直線l的對稱點在直線x=$\frac{{a}^{2}}{2}$上.
(1)求橢圓C的方程;
(2)過點E(-2,0)的直線m交橢圓C于點M、N,且滿足tan∠MON=$\frac{4\sqrt{6}}{3\overrightarrow{OM}•\overrightarrow{ON}}$(O為坐標(biāo)原點),求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{x^2}{4}+\frac{y^2}{b^2}=1$(b>0),以橢圓C的短軸為直徑的圓O經(jīng)過橢圓C左右兩個焦點,A,B是橢圓C的長軸端點.
(1)求圓O的方程和橢圓C的離心率e;
(2)設(shè)P,Q分別是橢圓C和圓O上的動點(P,Q位于y軸兩側(cè)),且直線PQ與x軸平行,直線AP,BP分別與y軸交于點M,N,試判斷MQ與NQ所在的直線是否互相垂直,若是,請證明你的結(jié)論;若不是,也請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.以下四個命題中是假命題的是(  )
A.“昆蟲都是6條腿,竹節(jié)蟲是昆蟲,所以竹節(jié)蟲有6條腿”此推理屬于演繹推理.
B.“在平面中,對于三條不同的直線a,b,c,若a∥b,b∥c則a∥c,將此結(jié)論放到空間中也成立”此推理屬于合情推理.
C.“a≤0”是“函數(shù)f(x)=ax+lnx存在極值”的必要不充分條件.
D.若$x∈(0\;,\;\;\frac{π}{2}]$,則$sinx+\frac{2}{sinx}$的最小值為$2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知:復(fù)數(shù)z1=2sinAsinC+(a+c)i,z2=1+2cosAcosC+4i,且z1=z2,其中A、B、C為△ABC的內(nèi)角,a、b、c為角A、B、C所對的邊.
(Ⅰ)求角B的大小;
(Ⅱ) 若$b=2\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知雙曲線${x^2}-\frac{y^2}{b^2}=1({b>0})$,以原點O為圓心,雙曲線的實半軸長為半徑長的圓與雙曲線的兩條漸近線相交于A,B,C,D四點,這四點圍成的四邊形面積為b,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.2C.3D.$2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案