19.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{y≤x}\\{y≥-2}\end{array}\right.$,則z=x+y的最大值為( 。
A.1B.2C.0.5D.1.5

分析 首先畫出平面區(qū)域,利用z的幾何意義求最大值.

解答 解:x,y滿足平面區(qū)域如圖:當(dāng)直線y=-x+z與x+y=1重合時(shí),z最大,所以z的最大值為1;
故選A.

點(diǎn)評 本題考查了簡單線性規(guī)劃問題,正確畫出平面區(qū)域是解答的前提;利用目標(biāo)函數(shù)的幾何意義求最值是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直三棱柱ABC-A1B1C1中,若BC⊥AC,$∠A=\frac{π}{3}$,AC=4,AA1=4,M為AA1的中點(diǎn),P為BM的中點(diǎn),Q在線段CA1上,A1Q=3QC.則異面直線PQ與AC所成角的正弦值為(  )
A.$\frac{{\sqrt{39}}}{13}$B.$\frac{{2\sqrt{13}}}{13}$C.$\frac{{2\sqrt{39}}}{13}$D.$\frac{{\sqrt{13}}}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知不等式$ax-\frac{1}{a}>0$的解集為(1,+∞),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知實(shí)數(shù)組成的數(shù)組(x1,x2,…,xn)滿足條件
①x1+x2+…+xn=0
②|x1|+|x2|+…+|xn|=1
(1)當(dāng)n=2時(shí),求x1,x2的值
(2)當(dāng)n=3時(shí),求證:|3x1+2x2+x3|≤1
(3)設(shè)a1≥a2≥a3≥…≥an,且a1>an(n≥2)
求證:$|{{a_1}{x_1}+{a_2}{x_2}+{a_3}{x_3}+…+{a_n}{x_n}}|≤\frac{1}{2}({a_1}-{a_n})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{3^x}-1,x≤1}\\{f(x-1),x>1}\end{array}}\right.$,則f(f(2))=2,函數(shù)f(x)的零點(diǎn)有1個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.為了緩解交通壓力,上海修建了一條專用地鐵,用一列火車作為公共交通車,如果該列火車每次拖4節(jié)車廂,則每日能來回16趟;如果該列火車每次拖7節(jié)車廂,則每日能來回10趟.火車每日每次拖掛車廂的節(jié)數(shù)是相同的,每日來回趟數(shù)是每次拖掛車廂節(jié)數(shù)的一次函數(shù),每節(jié)車廂滿載時(shí)能載客110人,試問這列火車滿載時(shí)每次應(yīng)拖掛多少節(jié)車廂才能使每日營運(yùn)人數(shù)最多?并求出每天最多的營運(yùn)人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.$A=\left\{{\left.x\right|y=\sqrt{2x-{x^2}}}\right\}$,$B=\left\{{\left.y\right|y=2-\frac{1}{{{x^2}+1}}}\right\}$,則A∩B=(  )
A.[1.2]B.(1.2]C.[1.2)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=$\sqrt{2}$,AB=BC=1,AD=2,E為PD中點(diǎn).
(1)求證:CE∥平面PAB;
(2)求證:平面PAC⊥平面PDC;
(3)求二面角P-CD-A的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow m$=(2sinx,2cosx),$\overrightarrow n$=(cos$\frac{π}{3}$,-sin$\frac{π}{3}$),f(x)=$\overrightarrow m$•$\overrightarrow n$+1.
(Ⅰ)求f($\frac{π}{2}$)的值及f(x)的最大值;
(Ⅱ)若函數(shù)g(x)=f($\frac{π}{2}$x),求g(1)+g(2)+g(3)+…+g(2014)+g(2015);
(Ⅲ) 若函數(shù)h(x)=$\frac{{sinx•{f^2}(x+\frac{π}{3})-8}}{{1+{{cos}^2}x}}$在區(qū)間[-$\frac{5π}{4}$,$\frac{5π}{4}$]上的最大值為M,最小值為m,求M+m的值.

查看答案和解析>>

同步練習(xí)冊答案