【題目】如圖,定義:以橢圓中心為圓心,長(zhǎng)軸為直徑的圓叫做橢圓的“輔圓”.過橢圓第一象限內(nèi)一點(diǎn)P作x軸的垂線交其“輔圓”于點(diǎn)Q,當(dāng)點(diǎn)Q在點(diǎn)P的上方時(shí),稱點(diǎn)Q為點(diǎn)P的“上輔點(diǎn)”.已知橢圓上的點(diǎn)的上輔點(diǎn)為.
(1)求橢圓E的方程;
(2)若的面積等于,求上輔點(diǎn)Q的坐標(biāo);
(3)過上輔點(diǎn)Q作輔圓的切線與x軸交于點(diǎn)T,判斷直線PT與橢圓E的位置關(guān)系,并證明你的結(jié)論.
【答案】(1);(2);(3)直線PT與橢圓相切,證明見解析
【解析】
(1)根據(jù)定義直接求解即可;(2)設(shè)點(diǎn),,則點(diǎn),,則可得到,再根據(jù)的面積可得到,進(jìn)一步與橢圓方程聯(lián)立即得解;(3)表示出直線的方程,與橢圓方程聯(lián)立,再判斷△即可得出結(jié)論.
(1)橢圓上的點(diǎn)的上輔點(diǎn)為,
輔圓的半徑為,橢圓長(zhǎng)半軸為,
將點(diǎn)代入橢圓方程中,解得,
橢圓的方程為;
(2)設(shè)點(diǎn),,則點(diǎn),,將兩點(diǎn)坐標(biāo)分別代入輔圓方程和橢圓方程可得,,,
故,即,
又,則,
將與聯(lián)立可解得,則,
點(diǎn)的坐標(biāo)為;
(3)直線與橢圓相切,證明如下:
設(shè)點(diǎn),,由(2)可知,,
與輔圓相切于點(diǎn)的直線方程為,則點(diǎn),
直線的方程為:,整理得,
將與橢圓聯(lián)立并整理可得,,
由一元二次方程的判別式,可知,上述方程只有一個(gè)解,故直線與橢圓相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的展開圖如圖二,其中四邊形為邊長(zhǎng)等于的正方形,和均為正三角形,在三棱錐中:
(1)證明:平面平面;
(2)若是的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:極坐標(biāo)與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).
(1)求曲線的普通方程;
(2)經(jīng)過點(diǎn)(平面直角坐標(biāo)系中點(diǎn))作直線交曲線于, 兩點(diǎn),若恰好為線段的三等分點(diǎn),求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ) 若函數(shù)有零點(diǎn), 求實(shí)數(shù)的取值范圍;
(Ⅱ) 證明: 當(dāng)時(shí), .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,(是自然對(duì)數(shù)的底數(shù)),且,令().
(1)證明:;
(2)證明:是等比數(shù)列,且的通項(xiàng)公式是;
(3)是否存在常數(shù),對(duì)任意自然數(shù)均有成立?若存在,求的取值范圍,否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線與拋物線交于,兩點(diǎn),與橢圓交于,兩點(diǎn),直線,,,(為坐標(biāo)原點(diǎn))的斜率分別為,,,,若.
(1)是否存在實(shí)數(shù),滿足,并說明理由;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同;曲線 的方程是,直線的參數(shù)方程為(為參數(shù),),設(shè), 直線與曲線交于 兩點(diǎn).
(1)當(dāng)時(shí),求的長(zhǎng)度;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知曲線C1:, 曲線C2:,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系. 并在兩種坐標(biāo)系中取相同的單位長(zhǎng)度。
(1)寫出曲線C1,C2的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知點(diǎn)A是射線l:與C1的交點(diǎn),點(diǎn)B是l與C2的異于極點(diǎn)的交點(diǎn),當(dāng)在區(qū)間上變化時(shí),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com