【題目】如圖,已知拋物線.點A,拋物線上的點P(x,y),過點B作直線AP的垂線,垂足為Q

(I)求直線AP斜率的取值范圍;

(II)求的最大值

【答案】(I)(-1,1);(II).

【解析】

試題本題主要考查直線方程、直線與拋物線的位置關(guān)系等基礎知識,同時考查解析幾何的基本思想方法和運算求解能力。滿分15分。

(Ⅰ)由斜率公式可得AP的斜率為,再由,得直線AP的斜率的取值范圍;(Ⅱ)聯(lián)立直線APBQ的方程,得Q的橫坐標,進而表達的長度,通過函數(shù)求解的最大值.

試題解析:

(Ⅰ)設直線AP的斜率為k,

,

因為,所以直線AP斜率的取值范圍是

(Ⅱ)聯(lián)立直線APBQ的方程

解得點Q的橫坐標是

因為|PA|==

|PQ|= ,

所以

,

因為,

所以 f(k)在區(qū)間上單調(diào)遞增,上單調(diào)遞減,

因此當k=時,取得最大值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于定義在上的函數(shù),如果存在兩條平行直線,使得對于任意,都有恒成立,那么稱函數(shù)是帶狀函數(shù),若,之間的最小距離存在,則稱為帶寬.

1)判斷函數(shù)是不是帶狀函數(shù)?如果是,指出帶寬(不用證明);如果不是,說明理由;

2)求證:函數(shù))是帶狀函數(shù);

3)求證:函數(shù))為帶狀函數(shù)的充要條件是.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù),,若函數(shù)有4個零點,則實數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場營銷人員進行某商品M市場營銷調(diào)查發(fā)現(xiàn),每回饋消費者一定的點數(shù),該商品每天的銷量就會發(fā)生一定的變化,經(jīng)過試點統(tǒng)計得到以下表:

反饋點數(shù)

1

2

3

4

5

銷量(百件)/

0. 5

0. 6

1

1. 4

1. 7

1)經(jīng)分析發(fā)現(xiàn),可用線性回歸模型擬合當?shù)卦撋唐蜂N量(百件)與返還點數(shù)之間的相關(guān)關(guān)系. 請用最小二乘法求關(guān)于的線性回歸方程,并預測若返回6個點時該商品每天銷量;

2)若節(jié)日期間營銷部對商品進行新一輪調(diào)整. 已知某地擬購買該商品的消費群體十分龐大,經(jīng)營銷調(diào)研機構(gòu)對其中的200名消費者的返點數(shù)額的心理預期值進行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

返還點數(shù)預期值區(qū)間(百分比)

頻數(shù)

20

60

60

30

20

10

(。┣筮@200位擬購買該商品的消費者對返點點數(shù)的心理預期值的樣本平均數(shù)及中位數(shù)的估計值(同一區(qū)間的預期值可用該區(qū)間的中點值代替;估計值精確到0. 1);

(ⅱ)將對返點點數(shù)的心理預期值在的消費者分別定義為欲望緊縮型消費者和欲望膨脹型消費者,現(xiàn)采用分層抽樣的方法從位于這兩個區(qū)間的30名消費者中隨機抽取6名,再從這6人中隨機抽取2名進行跟蹤調(diào)查,設抽出的2人中,至少有一個人是欲望膨脹型消費者的概率是多少?

參考公式及數(shù)據(jù):①;②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為為參數(shù)), 橢圓C的參數(shù)方程為為參數(shù))。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,

(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標

(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知fx)是二次函數(shù),且f0=0fx+1=fx+x+1,

1)求fx)的表達式;

2)若fx)>ax∈[﹣11]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,是等腰直角三角形,,D,E分別是AC,AB上的點,,沿DE折起,得到如圖2所示的四棱錐,使得

圖1 圖2

(1)證明:平面平面BCD;

(2)求與平面所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若,對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為

(1)為曲線上的動點,點在線段上,且滿足,求點的軌跡的直角坐標方程;

(2)設點的極坐標為,點在曲線上,求面積的最大值.

查看答案和解析>>

同步練習冊答案