如圖,在三棱柱中,側(cè)棱底面,,

(1)證明:平面
(2)若是棱的中點(diǎn),在棱上是否存在一點(diǎn),使平面?證明你的結(jié)論.
(1)見解析.(2)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面.證明見解析.

試題分析:(1)要證明線面垂直,須證明直線與平面內(nèi)的兩條相交直線都垂直,一般要遵循“先找再作”的原則,對(duì)圖形進(jìn)行細(xì)致分析是關(guān)鍵.注意到,得到
由側(cè)棱底面,得到.從而得到平面,
利用,得到.結(jié)合四邊形為正方形.
得到.推出平面
(2)對(duì)于這類存在性問題,往往是先通過對(duì)圖形的分析,找“特殊點(diǎn)”,肯定其存在性,再加以證明.
注意到當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),取的中點(diǎn),連、、,利用三角形相似,得到平面平面,利用平面平面.推出平面
試題解析:(1)∵,∴
∵側(cè)棱底面,∴
,∴平面
平面,∴,
,則.                                     4分
中,,,∴
,∴四邊形為正方形.
.                                                  6分
,∴平面.                           7分
(2)當(dāng)點(diǎn)為棱的中點(diǎn)時(shí),平面.                  9分
證明如下:
如圖,取的中點(diǎn),連、、,

、分別為、的中點(diǎn),

平面,平面,
平面.                    11分
同理可證平面.                   12分

∴平面平面.                   13分
平面,
平面.                          14分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在矩形中,點(diǎn)為邊上的點(diǎn),點(diǎn)為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.

(1) 求證:平面平面;
(2) 求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐的底面是正方形,棱底面,,的中點(diǎn).

(1)證明平面
(2)證明平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC—A1B1C1,AB=AC=1,∠BAC=90°,連結(jié)A1B與∠A1BC=60°.

(Ⅰ)求證:AC⊥A1B;
(Ⅱ)設(shè)D是BB1的中點(diǎn),求三棱錐D-A1BC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在各棱長(zhǎng)均為的三棱柱中,側(cè)面底面,

(1)求側(cè)棱與平面所成角的正弦值的大小;
(2)已知點(diǎn)滿足,在直線上是否存在點(diǎn),使?若存在,請(qǐng)確定點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,圓錐頂點(diǎn)為.底面圓心為,其母線與底面所成的角為.是底面圓上的兩條平行的弦,軸與平面所成的角為

(Ⅰ)證明:平面與平面的交線平行于底面;
(Ⅱ)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知一個(gè)平面與正方體的12條棱的夾角均為,那么        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知命題“直線與平面有公共點(diǎn)”是真命題,那么下列命題:
①直線上的點(diǎn)都在平面內(nèi);
②直線上有些點(diǎn)不在平面內(nèi);
③平面內(nèi)任意一條直線都不與直線平行.其中真命題的個(gè)數(shù)是( )
A.0 B.1 C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是兩條不同的直線,是兩個(gè)不同的平面,在下列條件中,能成為的充分條件的是(    )
A.,所成角相等
B.內(nèi)的射影分別為,且
C.,
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案