【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,ADCD,OAC的中點,EBD的中點.

(1)證明:DO⊥底面ABC;

(2)求二面角D-AE-C的余弦值.

【答案】(1)見解析;

(2).

【解析】

1)根據(jù)等腰三角形的性質得到,在根據(jù)面面垂直的性質定理,證得平面.

2)以為坐標原點建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.

(1)證明:∵ ADCD,OAC的中點,

DOAC

∵ 平面DAC⊥底面ABC,平面DAC∩底面ABCAC,

DO⊥底面ABC

(2)解:由條件易知DOBOBOAC

OAOCOD=2, OB

如圖,以點O為坐標原點,OAx軸, OBy軸,OCz軸建立空間直角坐標系.

,,,

,,

,,

設平面ADE的一個法向量為,

,則,所以

同理可得平面AEC的一個法向量

因為二面角D-AE-C的平面角為銳角,所以二面角D-AE-C的余弦值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】正方體的棱長為,,,,分別是,,,的中點,則過且與平行的平面截正方體所得截面的面積為______,和該截面所成角的正弦值為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線與拋物線交于,兩點,且.

(1)求的方程;

(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標;若不存在,請說明理由..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線與拋物線交于,兩點,且.

(1)求的方程;

(2)試問:在軸的正半軸上是否存在一點,使得的外心在上?若存在,求的坐標;若不存在,請說明理由..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設動點P在棱長為1的正方體ABCDA1B1C1D1的對角線BD1上,記λ.∠APC為鈍角時,λ的取值范圍是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

(本題滿分15分)已知m1,直線

橢圓,分別為橢圓的左、右焦點.

)當直線過右焦點時,求直線的方程;

)設直線與橢圓交于兩點,

的重心分別為.若原點在以線段

為直徑的圓內,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中),,已知處有相同的切線.

1)求函數(shù)的解析式;

2)求函數(shù)在區(qū)間上的最大值和最小值;

3)判斷函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,動圓與圓外切,與圓內切.

1)求動圓圓心的軌跡方程;

2)直線過點且與動圓圓心的軌跡交于兩點.是否存在面積的最大值,若存在,求出的面積;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市準備引進優(yōu)秀企業(yè)進行城市建設. 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進行綜合評估,得分情況如莖葉圖所示.

(Ⅰ)根據(jù)莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;

(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準備引進的優(yōu)秀企業(yè)中各隨機選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.

注:方差

查看答案和解析>>

同步練習冊答案