【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若在上的最大值為1,求的值.
【答案】(1) 的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為.
(2) 或.
【解析】試題分析:(1)由函數(shù)的解析式,可求出函數(shù)導(dǎo)函數(shù)的解析式,進而根據(jù)是的一個極值點,可構(gòu)造關(guān)于的方程,根據(jù),求出值;可得函數(shù)導(dǎo)函數(shù)的解析式,分析導(dǎo)函數(shù)值大于和小于時,的范圍,可得函數(shù)的單調(diào)區(qū)間;(2)對函數(shù)求導(dǎo),寫出函數(shù)的導(dǎo)函數(shù)等于的的值,列表表示出在各個區(qū)間上的導(dǎo)函數(shù)和函數(shù)的情況,做出極值,把極值同端點處的值進行比較得到最大值,最后利用條件建立關(guān)于的方程求得結(jié)果.
試題解析:(1)因為,
所以.
因為函數(shù)在處取得極值,
所以.
當(dāng)時,,,
隨的變化情況如下表:
所以的單調(diào)遞增區(qū)間為和,
單調(diào)遞減區(qū)間為.
(2),
令,解得.
因為在處取得極值,所.
當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.
所以在區(qū)間上的最大值為.
令,解得.
當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,
所以最大值1在或處取得.
而,
所以,解得.
當(dāng)時,在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.
所以最大值1在或處取得.
而,
所以,
解得,與矛盾.
當(dāng)時,在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,所以最大值1在處取得,而,矛盾.
綜上所述,或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量(噸)與相應(yīng)的生產(chǎn)能耗(噸)標(biāo)準(zhǔn)煤的幾組對照數(shù)據(jù):
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)已知該廠技改前,100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(1)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?
,參考數(shù)值:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018安徽江南十校高三3月聯(lián)考】線段為圓: 的一條直徑,其端點, 在拋物線: 上,且, 兩點到拋物線焦點的距離之和為.
(I)求直徑所在的直線方程;
(II)過點的直線交拋物線于, 兩點,拋物線在, 處的切線相交于點,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個不同的實數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:
直徑/ | 58 | 59 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 73 | 合計 |
件數(shù) | 1 | 1 | 3 | 5 | 6 | 19 | 33 | 18 | 4 | 4 | 2 | 1 | 2 | 1 | 100 |
經(jīng)計算,樣本的平均值,標(biāo)準(zhǔn)差,以頻率值作為概率的估計值.
(Ⅰ)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應(yīng)事件的概率);①;
②;③.
評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級.
(2)將直徑小于等于或直徑大于的零件認為是次品.
(ⅰ)從設(shè)備的生產(chǎn)流水線上隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學(xué)期望;
(ⅱ)從樣本中隨意抽取2件零件,計算其中次品個數(shù)的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的方程是,曲線的參數(shù)方程是(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線與曲線的極坐標(biāo)方程;
(2)若射線與曲線交于點,與直線交于點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是直角梯形,,,,側(cè)面底面,且是以為底的等腰三角形.
(Ⅰ)證明:
(Ⅱ)若四棱錐的體積等于.問:是否存在過點的平面分別交,于點,使得平面平面?若存在,求出的面積;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的偶函數(shù),對于x∈R,都有f(x+4)=f(x)+f(2)成立,當(dāng)x1,x2∈[0,2]且x1≠x2時,都有 給出下列四個命題:
①f(﹣2)=0;
②直線x=﹣4是函數(shù)y=f(x)的圖象的一條對稱軸;
③函數(shù)y=f(x)在[4,6]上為減函數(shù);
④函數(shù)y=f(x)在(﹣8,6]上有四個零點.
其中所有正確命題的序號為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 上的點到橢圓一個焦點的距離的最大值是最小值的倍,且點在橢圓上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線,與橢圓交于不同于點的、兩點,與直線交于點,記直線、、的斜率分別為、、.試探究與的關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com