【題目】在平面直角坐標(biāo)系中,直線的方程是,曲線的參數(shù)方程是(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線與曲線的極坐標(biāo)方程;
(2)若射線與曲線交于點(diǎn),與直線交于點(diǎn),求的取值范圍.
【答案】(1)直線極坐標(biāo)方程:,曲線的極坐標(biāo)方程為;(2).
【解析】試題分析:(1)將曲線的參數(shù)方程進(jìn)行消參,再根據(jù),即可求得直線與曲線的極坐標(biāo)方程;(2)設(shè),則,從而表示出,根據(jù)三角恒等變換及三角函數(shù)的圖象與性質(zhì)即可求得取值范圍.
試題解析:(1)由,得直線極坐標(biāo)方程:,曲線的參數(shù)方程為(為參數(shù)),消去參數(shù)得曲線的普通方程為,即,將代入上式得.
∴曲線的極坐標(biāo)方程為;
(2)設(shè),則,所以
,
因?yàn)?/span>,所以,所以,
所以,故的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,且,是棱上的動(dòng)點(diǎn),是的中點(diǎn).
(1)當(dāng)是中點(diǎn)時(shí),求證:平面;
(2)在棱上是否存在點(diǎn),使得平面與平面所成銳二面角為,若存在,求的長(zhǎng),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程是(是參數(shù)),圓的極坐標(biāo)方程為.
(1)求圓心的直角坐標(biāo);
(2)由直線上的點(diǎn)向圓引切線,并切線長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).在極坐標(biāo)系(與平面直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸)中,直線的方程為.
(1)求曲線的普通方程及直線的直角坐標(biāo)方程;
(2)設(shè)是曲線上的任意一點(diǎn),求點(diǎn)到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)若在上的最大值為1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)當(dāng)時(shí),令函數(shù),若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅?zhǔn)俏覈?guó)齊梁時(shí)代的數(shù)學(xué)家,是祖沖之的兒子,他提出了一條原理:“冪勢(shì)既同,則積不容易.”這里的“冪”指水平截面的面積.“勢(shì)”指高,這句話的意思是:兩個(gè)等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個(gè)幾何體體積相等。于是可把半徑相等的半球(底面在下)和圓柱(圓柱高等于半徑)放在同一水平面上,圓柱里再放一個(gè)半徑和高都與圓柱相等的圓錐(錐尖朝下),考察圓柱里被圓錐截剩的立體,這樣在同一高度用平行平面截得的半球截面和圓柱中剩余立體截得的截面面積相等,因此半球的體積等于圓柱中剩余立體的體積.設(shè)由橢圓所圍成的平面圖形繞軸旋轉(zhuǎn)一周后,得一橄欖狀的幾何體(如圖,稱為“橢球體”),請(qǐng)類比以上所介紹的應(yīng)用祖暅原理求球體體積的做法求這個(gè)橢球體的體積.其體積等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某校矩形的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,且成績(jī)分布在范圍內(nèi),規(guī)定分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng),按文理科用分層抽樣的放發(fā)抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖.
(Ⅰ)填寫下面的列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”;
(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(2)若函數(shù)在上存在兩個(gè)極值點(diǎn),且,證明: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com