已知橢圓上的任意一點到它兩個焦點的距離之和為,且它的焦距為2.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知直線與橢圓交于不同兩點,且線段的中點不在圓內(nèi),求實數(shù)的取值范圍.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)已知拋物線的準線經(jīng)過雙曲線的左焦點,若拋物線與雙曲線的一個交點是
(1)求拋物線的方程; (2)求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知橢圓的中心在坐標原點,焦點在軸上,橢圓上的點到焦點距離的最大值為,最小值為
(1)求橢圓的標準方程;
(2)若直線與橢圓相交于兩點(不是左右頂點),且以為直徑的圓過橢圓的右頂點.求證:直線過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知焦點在軸上的雙曲線的兩條漸近線過坐標原點,且兩條漸近線
與以點 為圓心,1為半徑的圓相切,又知的一個焦點與關于直線
對稱.
(1)求雙曲線的方程;
(2)設直線與雙曲線的左支交于,兩點,另一直線經(jīng)過  的中點,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在ABC中,C=90°,AC="b," BC="a," P為三角形內(nèi)的一點,且,
(Ⅰ)建立適當?shù)淖鴺讼登蟪鯬的坐標;
(Ⅱ)求證:│PA│2+│PB│2=5│PC│
(Ⅲ)若a+2b=2,求以PA,PB,PC分別為直徑的三個圓的面積之和的最小值,并求出此時的b值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分l0分)直角坐標系xOy中,以原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的方程為,直線的方程為(t為參數(shù)),直線與曲線C的公共點為T.
(Ⅰ)求點T的極坐標;(Ⅱ)過點T作直線被曲線C截得的線段長為2,求直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點為F1,F(xiàn)2(0,),且離心率。
(I)求橢圓的方程;
(II)直線l(與坐標軸不平行)與橢圓交于不同的兩點A、B,且線段AB中點的橫坐標
,求直線l的斜率的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)已知直線L:與拋物線C:,相交于兩點,設點,的面積為.
(Ⅰ)若直線L上與連線距離為的點至多存在一個,求的范圍。
(Ⅱ)若直線L上與連線的距離為的點有兩個,分別記為,且滿足 恒成立,求正數(shù)的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)已知頂點在原點, 焦點在x軸上的拋物線被直線y=2x+1截得的弦長為,求拋物線的方程.

查看答案和解析>>

同步練習冊答案