【題目】甲、乙兩家鞋帽商場銷售同一批品牌運動鞋,每雙標(biāo)價為800元,甲、乙兩商場銷售方式如下:在甲商場買一雙售價為780元,買兩雙每雙售價為760元,依次類排,每多買一雙則所買各雙售價都再減少20元,但每雙售價不能低于440元;乙商場一律按標(biāo)價的75%銷售.
(1)分別寫出在甲、乙兩商場購買雙運動鞋所需費用的函數(shù)解析式和;
(2)某單位需購買一批此類品牌運動鞋作為員工福利,問:去哪家商場購買花費較少?
【答案】(1),;(2)見解析
【解析】
(1)結(jié)合甲商場的銷售方式,可得時,去甲商場購買的單價為元,時,去甲商場購買的單價為440元;去乙商場購買單價為元,進而可求出和的解析式;
(2)分和兩種情況,討論和的大小關(guān)系,即可求出答案.
(1)由題意,,
由,可得當(dāng)時,去甲商場購買運動鞋的單價為元,此時所需費用為;當(dāng)時,去甲商場購買運動鞋的單價為440元,所需費用為元;
去乙商場購買運動鞋單價一直為元,所需費用為元.
則,.
(2)當(dāng)且時,成立;
當(dāng)且時,
令,解得,
令,解得,
令,解得,
所以,該單位購買少于10雙,去乙商場花費較少,若購買10雙,則去兩家商場花費相同,若購買超過10雙,則去甲商場花費較少.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的反函數(shù)為,若存在函數(shù)使得對函數(shù)定義域內(nèi)的任意都有,則稱函數(shù)為函數(shù)的“Inverse”函數(shù).
(1)判斷下列哪個函數(shù)是函數(shù)的“Inverse”函數(shù)并說明理由.
①;②;
(2)設(shè)函數(shù)存在反函數(shù),證明函數(shù)存在唯一的“Inverse”函數(shù)的充要條件是函數(shù)的值域為;
(3)設(shè)函數(shù)存在反函數(shù),函數(shù)為的一個“Inverse”函數(shù),記,其中,若對函數(shù)定義域內(nèi)的任意都有,求所有滿足條件的函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為某旅行團包飛機去旅游,其中旅行社的包機費為15000元.旅游團中的每人的飛機票按以下方式與旅行社結(jié)算:若旅游團的人數(shù)不超過35人時,飛機票每張收費800元;若旅游團的人數(shù)多于35人,則給予優(yōu)惠,每多1人,機票費每張減少10元,但旅游團的人數(shù)最多有60人.設(shè)旅行團的人數(shù)為人,飛機票價格為元,旅行社的利潤為元.
(1)寫出飛機票價格元與旅行團人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅游團的人數(shù)為多少時,旅行社可獲得最大利潤?求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了讓學(xué)生更多的了解“數(shù)學(xué)史”知識,某中學(xué)高二年級舉辦了一次“追尋先哲的足跡,傾聽數(shù)學(xué)的聲音”的數(shù)學(xué)史知識競賽活動,共有800名學(xué)生參加了這次競賽,為了解本次競賽的成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,統(tǒng)計結(jié)果見下表.請你根據(jù)頻率分布表解答下列問題:
序號 | 分組(分數(shù)) | 組中值 | 頻數(shù)(人數(shù)) | 頻率 |
1 | 65 | ① | 0.12 | |
2 | 75 | 20 | ② | |
3 | 85 | ③ | 0.24 | |
4 | 95 | ④ | ⑤ | |
合計 | 50 | 1 |
(1)填充頻率分布表中的空格;
(2)規(guī)定成績不低于85分的同學(xué)能獲獎,請估計在參加的800名學(xué)生中大概有多少名同學(xué)獲獎?
(3)在上述統(tǒng)計數(shù)據(jù)的分析中有一項計算見算法流程圖,求輸出的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某桶裝水經(jīng)營部每天的房租、人員工資等固定成本為300元,每桶水的進價是8元,銷售單價與日均銷售量的關(guān)系如表所示:
銷售單價/元 | 9 | 10 | 11 | 12 | 13 | 14 |
日均銷售量/桶 | 550 | 500 | 450 | 400 | 350 | 300 |
請根據(jù)以上數(shù)據(jù)分析,這個店怎樣定每桶水的單價才能獲得最大利潤?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域為R,求實數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿足:對任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當(dāng)m≠0時,探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,以原點為極點,以軸的非負半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線 的極坐標(biāo)方程為:.
(I)若曲線,參數(shù)方程為:(為參數(shù)),求曲線的直角坐標(biāo)方程和曲線的普通方程
(Ⅱ)若曲線,參數(shù)方程為 (為參數(shù)),,且曲線,與曲線交點分別為,求的取值范圍,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com