【題目】

△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,bc.已知acosCccosA2bcosA

1)求角A的值;

2)求sinBsinC的取值范圍.

【答案】1;(2

【解析】

試題(1)要求解,已知條件中有角有邊,一般情況下我們可以利用正弦定理把邊化為角的關(guān)系,本題acosCccosA2bcosA,由正弦定理可化為,于是有,即,而,于是;(2)由(1,且,,由兩角和與差的正弦公式可轉(zhuǎn)化為,再由正弦函數(shù)的性質(zhì)可得取值范圍.

試題解析:(1)因?yàn)?/span>acosCccosA2bcosA,所以sinAcosCsinCcosA2sinBcosA

sin(AC)2sinBcosA

因?yàn)?/span>ABCπ,所以sin(AC)sinB

從而sinB2sinBcosA

因?yàn)?/span>sinB≠0,所以

因?yàn)?/span>0Aπ,所以

2

因?yàn)?/span>,所以

所以sinBsinC的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若求函數(shù)的單調(diào)遞減區(qū)間;

(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中;

1BMED平行;(2CNBE是異面直線;(3CNBM所成角為60°;(4CNAF垂直. 以上四個(gè)命題中,正確命題的序號(hào)是( )

A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,

1)求證:平面;

2)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為奇函數(shù),為偶函數(shù),且.

1)求函數(shù)的解析式,并用函數(shù)單調(diào)性的定義證明:函數(shù)上是減函數(shù);

2)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最小正周期、單調(diào)區(qū)間;

2)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩家鞋帽商場(chǎng)銷(xiāo)售同一批品牌運(yùn)動(dòng)鞋,每雙標(biāo)價(jià)為800元,甲、乙兩商場(chǎng)銷(xiāo)售方式如下:在甲商場(chǎng)買(mǎi)一雙售價(jià)為780元,買(mǎi)兩雙每雙售價(jià)為760元,依次類(lèi)排,每多買(mǎi)一雙則所買(mǎi)各雙售價(jià)都再減少20元,但每雙售價(jià)不能低于440元;乙商場(chǎng)一律按標(biāo)價(jià)的75%銷(xiāo)售.

1)分別寫(xiě)出在甲、乙兩商場(chǎng)購(gòu)買(mǎi)雙運(yùn)動(dòng)鞋所需費(fèi)用的函數(shù)解析式;

2)某單位需購(gòu)買(mǎi)一批此類(lèi)品牌運(yùn)動(dòng)鞋作為員工福利,問(wèn):去哪家商場(chǎng)購(gòu)買(mǎi)花費(fèi)較少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間上單調(diào)遞減,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是平行四邊形,,的中點(diǎn),且有,現(xiàn)以為折痕,將折起,使得點(diǎn)到達(dá)點(diǎn)的位置,且

1)證明:平面;

2)若四棱錐的體積為,求四棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案