【題目】
在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范圍.
【答案】(1);(2).
【解析】
試題(1)要求解,已知條件中有角有邊,一般情況下我們可以利用正弦定理把邊化為角的關(guān)系,本題acosC+ccosA=2bcosA,由正弦定理可化為,于是有,即,而,于是,;(2)由(1),且,,由兩角和與差的正弦公式可轉(zhuǎn)化為,再由正弦函數(shù)的性質(zhì)可得取值范圍.
試題解析:(1)因?yàn)?/span>acosC+ccosA=2bcosA,所以sinAcosC+sinCcosA=2sinBcosA,
即sin(A+C)=2sinBcosA.
因?yàn)?/span>A+B+C=π,所以sin(A+C)=sinB.
從而sinB=2sinBcosA.
因?yàn)?/span>sinB≠0,所以
因?yàn)?/span>0<A<π,所以
(2)
因?yàn)?/span>,所以.
所以sinB+sinC的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)遞減區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是正方體的平面展開(kāi)圖,在這個(gè)正方體中;
(1)BM與ED平行;(2)CN與BE是異面直線;(3)CN與BM所成角為60°;(4)CN與AF垂直. 以上四個(gè)命題中,正確命題的序號(hào)是( )
A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,.
(1)求證:平面;
(2)在線段上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為奇函數(shù),為偶函數(shù),且.
(1)求函數(shù)及的解析式,并用函數(shù)單調(diào)性的定義證明:函數(shù)在上是減函數(shù);
(2)若關(guān)于的方程有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)的最小正周期、單調(diào)區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家鞋帽商場(chǎng)銷(xiāo)售同一批品牌運(yùn)動(dòng)鞋,每雙標(biāo)價(jià)為800元,甲、乙兩商場(chǎng)銷(xiāo)售方式如下:在甲商場(chǎng)買(mǎi)一雙售價(jià)為780元,買(mǎi)兩雙每雙售價(jià)為760元,依次類(lèi)排,每多買(mǎi)一雙則所買(mǎi)各雙售價(jià)都再減少20元,但每雙售價(jià)不能低于440元;乙商場(chǎng)一律按標(biāo)價(jià)的75%銷(xiāo)售.
(1)分別寫(xiě)出在甲、乙兩商場(chǎng)購(gòu)買(mǎi)雙運(yùn)動(dòng)鞋所需費(fèi)用的函數(shù)解析式和;
(2)某單位需購(gòu)買(mǎi)一批此類(lèi)品牌運(yùn)動(dòng)鞋作為員工福利,問(wèn):去哪家商場(chǎng)購(gòu)買(mǎi)花費(fèi)較少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是平行四邊形,,為的中點(diǎn),且有,現(xiàn)以為折痕,將折起,使得點(diǎn)到達(dá)點(diǎn)的位置,且
(1)證明:平面;
(2)若四棱錐的體積為,求四棱錐的側(cè)面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com