【題目】如圖是正方體的平面展開圖,在這個(gè)正方體中;
(1)BM與ED平行;(2)CN與BE是異面直線;(3)CN與BM所成角為60°;(4)CN與AF垂直. 以上四個(gè)命題中,正確命題的序號是( )
A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行射擊比賽,各射擊局,每局射擊次,射擊命中目標(biāo)得分,未命中目標(biāo)得分,兩人局的得分情況如下:
甲 | ||||
乙 |
(Ⅰ)若從甲的局比賽中,隨機(jī)選取局,求這局的得分恰好相等的概率.
(Ⅱ)如果,從甲、乙兩人的局比賽中隨機(jī)各選取局,記這局的得分和為,求的分布列和數(shù)學(xué)期望.
(Ⅲ)在局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出的所有可能取值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的反函數(shù)為,若存在函數(shù)使得對函數(shù)定義域內(nèi)的任意都有,則稱函數(shù)為函數(shù)的“Inverse”函數(shù).
(1)判斷下列哪個(gè)函數(shù)是函數(shù)的“Inverse”函數(shù)并說明理由.
①;②;
(2)設(shè)函數(shù)存在反函數(shù),證明函數(shù)存在唯一的“Inverse”函數(shù)的充要條件是函數(shù)的值域?yàn)?/span>;
(3)設(shè)函數(shù)存在反函數(shù),函數(shù)為的一個(gè)“Inverse”函數(shù),記,其中,若對函數(shù)定義域內(nèi)的任意都有,求所有滿足條件的函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在實(shí)數(shù)集中,定義兩個(gè)實(shí)數(shù)、的運(yùn)算法則△如下:若,則,若,則.
(1)請分別計(jì)算和的值;
(2)對于實(shí)數(shù),判斷是否恒成立,并說明理由;
(3)求函數(shù)的解析式,其中,并求函數(shù)的最值.(符號“”表示相乘)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)為宣傳本省,隨機(jī)對本省內(nèi)歲的人群抽取了n人,回答問題“本省內(nèi)著名旅游景點(diǎn)有哪些”統(tǒng)計(jì)結(jié)果如圖表所示
(1)分別求出的值;
(2)從第組回答正確的人中用分層抽樣的方法抽取6人,求第組每組各抽取多少人?
(3)指出直方圖中,這組數(shù)據(jù)的中位數(shù)是多少(取整數(shù)值)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①存在實(shí)數(shù)x,使得sin x+cos x=2;
②函數(shù)y=cos是奇函數(shù);
③若角α,β是第一象限角,且α<β,則tan α<tan β;
④函數(shù)y=sin的圖象關(guān)于點(diǎn)(,0)成中心對稱.
⑤直線x=是函數(shù)y=sin圖象的一條對稱軸;
其中正確的命題是( ).
A.②④B.①③C.①④D.②⑤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】旅行社為某旅行團(tuán)包飛機(jī)去旅游,其中旅行社的包機(jī)費(fèi)為15000元.旅游團(tuán)中的每人的飛機(jī)票按以下方式與旅行社結(jié)算:若旅游團(tuán)的人數(shù)不超過35人時(shí),飛機(jī)票每張收費(fèi)800元;若旅游團(tuán)的人數(shù)多于35人,則給予優(yōu)惠,每多1人,機(jī)票費(fèi)每張減少10元,但旅游團(tuán)的人數(shù)最多有60人.設(shè)旅行團(tuán)的人數(shù)為人,飛機(jī)票價(jià)格為元,旅行社的利潤為元.
(1)寫出飛機(jī)票價(jià)格元與旅行團(tuán)人數(shù)之間的函數(shù)關(guān)系式;
(2)當(dāng)旅游團(tuán)的人數(shù)為多少時(shí),旅行社可獲得最大利潤?求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知acosC+ccosA=2bcosA.
(1)求角A的值;
(2)求sinB+sinC的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對數(shù)函數(shù)g(x)=1ogax(a>0,a≠1)和指數(shù)函數(shù)f(x)=ax(a>0,a≠1)互為反函數(shù).已知函數(shù)f(x)=3x,其反函數(shù)為y=g(x).
(Ⅰ)若函數(shù)g(kx2+2x+1)的定義域?yàn)?/span>R,求實(shí)數(shù)k的取值范圍;
(Ⅱ)若0<x1<x2且|g(x1)|=|g(x2)|,求4x1+x2的最小值;
(Ⅲ)定義在I上的函數(shù)F(x),如果滿足:對任意x∈I,總存在常數(shù)M>0,都有-M≤F(x)≤M成立,則稱函數(shù)F(x)是I上的有界函數(shù),其中M為函數(shù)F(x)的上界.若函數(shù)h(x)=,當(dāng)m≠0時(shí),探求函數(shù)h(x)在x∈[0,1]上是否存在上界M,若存在,求出M的取值范圍,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com