【題目】給出下列命題:

存在實數(shù)x,使得sin x+cos x=2

②函數(shù)y=cos是奇函數(shù);

③若角α,β是第一象限角,且αβ,則tan α<tan β

④函數(shù)y=sin的圖象關于點(,0)成中心對稱.

⑤直線x=是函數(shù)y=sin圖象的一條對稱軸;

其中正確的命題是(   ).

A.②④B.①③C.①④D.②⑤

【答案】D

【解析】

,的最大值為,即可判斷真假;②,函數(shù)y=cos是奇函數(shù),即可判斷真假;③,通過舉反例,即可判斷真假;④函數(shù)圖象的對稱中心,即可判斷真假;⑤當x=時,函數(shù)取得最小值,即可判斷真假.

,的最大值為,

因為,所以不存在實數(shù),使得sinx+cosx=2,所以該命題是假命題

②,函數(shù)y=cos是奇函數(shù),所以該命題是真命題;

③,,是第一象限角且.例如:,但,即不成立,所以該命題是假命題;

④,令,所以,所以函數(shù)圖象的對稱中心

,所以函數(shù)y=sin的圖象關于點(,0)成中心對稱是假命題;

⑤,當x=時,函數(shù)取得最小值,所以直線x=是函數(shù)y=sin圖象的一條對稱軸,所以該命題是真命題.

故選:D

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】據(jù)統(tǒng)計,目前微信用戶已達10億,2016年,諸多傳統(tǒng)企業(yè)大佬紛紛嘗試進入微商渠道,讓這個行業(yè)不斷地走向正規(guī)化、規(guī)范化.2017年3月25日,第五屆中國微商博覽會在山東濟南舜耕國際會展中心召開,力爭為中國微商產業(yè)轉型升級,某品牌飲料公司對微商銷售情況進行中期調研,從某地區(qū)隨機抽取6家微商一周的銷售金額(單位:百元)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)若銷售金額(單位:萬元)不低于平均值的微商定義為優(yōu)秀微商,其余為非優(yōu)秀微商,根據(jù)莖葉圖推斷該地區(qū)110家微商中有幾家優(yōu)秀?

(2)從隨機抽取的6家微商中再任取2家舉行消費者回訪調查活動,求恰有1家是優(yōu)秀微商的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產一種產品,根據(jù)經驗,其次品率與日產量 (萬件)之間滿足關系, (其中為常數(shù),且,已知每生產1萬件合格的產品以盈利2萬元,但每生產1萬件次品將虧損1萬元(注:次品率=次品數(shù)/生產量, 如表示每生產10件產品,有1件次品,其余為合格品).

1)試將生產這種產品每天的盈利額 (萬元)表示為日產量 (萬件)的函數(shù);

2)當日產量為多少時,可獲得最大利潤?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù))

1)求的單調增區(qū)間;

2)若時,的最大值為,求的值;

3)求取最大值時的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是正方體的平面展開圖,在這個正方體中;

1BMED平行;(2CNBE是異面直線;(3CNBM所成角為60°;(4CNAF垂直. 以上四個命題中,正確命題的序號是( )

A.(1)(2)(3)B.(2)(4)C.(3)(4)D.(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下列四個命題:

①函數(shù)滿足:對任意;

②函數(shù)均為奇函數(shù);

③若函數(shù)上有意義,則的取值范圍是;

④設是關于的方程,()的兩根,;

其中正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體中,平面平面,四邊形為正方形,四邊形為梯形,且,,

1)求證:平面;

2)在線段上是否存在點,使得平面?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)求函數(shù)的最小正周期、單調區(qū)間;

2)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個圓錐底面半徑為,高為

1)求圓錐的表面積.

2)求圓錐的內接正四棱柱表面積的最大值.

查看答案和解析>>

同步練習冊答案