分析 (Ⅰ)推導(dǎo)出AC⊥AB,AC⊥AA1,從而AC⊥平面AA1B1B,由A1C1∥AC,知A1C1⊥平面AA1B1B,由此能證明A1C1⊥AP.
(Ⅱ)以AC,AB,AA1為x,y,z軸,建立空間直角系,利用向量法能求出二面角P-AM-B的余弦值.
解答 證明:(Ⅰ)∵在直角梯形AA1B1B中,∠A1AB=90°,A1B1∥AB,AB=AA1=2A1B1=2,
直角梯形AA1C1C通過直角梯形AA1B1B以直線AA1為軸旋轉(zhuǎn)得到,
∴∠A1AB=∠A1AC=90°,且平面AA1C1C⊥平面AA1B1B,
∴∠BAC=90°,即AC⊥AB,
又∵AC⊥AA1,且AB∩AA1=A,
∴AC⊥平面AA1B1B,
由已知A1C1∥AC,∴A1C1⊥平面AA1B1B,
∵AP?平面AA1B1B,∴A1C1⊥AP.
解:(Ⅱ)由(Ⅰ)知AC,AB,AA1兩兩垂直,
分別以AC,AB,AA1為x,y,z軸,建立空間直角系,
由已知得AB=AC=AA1=2A1B1=2A1C1=2,
∴A(0,0,0),B(0,2,0),C(2,0,0),B1(0,1,2),A1(0,0,2),
∵M(jìn)為線段BC的中點(diǎn),P為線段BB1的中點(diǎn),
∴M(1,1,0),P(0,$\frac{3}{2}$,1),
平面ABM的一個(gè)法向量$\overrightarrow{m}$=(0,0,1),
設(shè)平面APM的一個(gè)法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AM}=x+y=0}\\{\overrightarrow{n}•\overrightarrow{AP}=\frac{3}{2}y+z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,-2,3),
由圖知二面角P-AM-B的大小為銳角,
設(shè)二面角P-AM-B的平面角為θ,
則cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{3}{\sqrt{17}}$=$\frac{3\sqrt{17}}{17}$,
∴二面角P-AM-B的余弦值為$\frac{3\sqrt{17}}{17}$.
點(diǎn)評 本題考查線線垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1-e | B. | e-1 | C. | 1-e | D. | e+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{16}-\frac{y^2}{4}=1$ | B. | $\frac{y^2}{4}-{x^2}=1$ | C. | ${y^2}-\frac{x^2}{4}=1$ | D. | $\frac{y^2}{16}-\frac{x^2}{4}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②④ | B. | ①②③ | C. | ①③ | D. | ①② |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4π | B. | 8π | C. | 9π | D. | 36π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x-4y+15=0 | B. | 3x+4y-33=0 | C. | 3x-4y+15=0或x=3 | D. | 3x+4y-33=0或x=3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com