【題目】已知在四棱錐中, 為正三角形, ,底面為平行四邊形,平面平面,點(diǎn)是側(cè)棱的中點(diǎn),平面與棱交于點(diǎn).
(1)求證: ;
(2)若,求平面與平面所成二面角(銳角)的余弦值.
【答案】(1)見解析;(2).
【解析】試題分析:(1)由底面是平行四邊形,利用線面平行的判定定理得面,在利用線面平行的性質(zhì)定理,即可證得.
(2)建立空間直角坐標(biāo)系,求得平面和平面的一個法向量,利用空間向量的夾角公式,即可求解平面和平面的二面角的余弦值.
試題解析:
(1)∵底面是平行四邊形,∴,
又∵面面, 面,
又∵四點(diǎn)共面,且平面平面,
.
(2)取中點(diǎn),連接側(cè)面為正三角形,故,又平面平面,且平面平面,平面, 在平行四邊形中, ,故為菱形, 且是中點(diǎn), .
如圖,建立空間直角坐標(biāo)系,
因?yàn)?/span>,則,
又,點(diǎn)是棱中點(diǎn), 點(diǎn)是棱中點(diǎn), ,
,設(shè)平面的法向量為,
則有, 不妨令,則平面的一個法向量為平面
是平面的一個法向量,
,
∴平面與平面所成的銳二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為( )
A. 10000立方尺 B. 11000立方尺
C. 12000立方尺 D. 13000立方尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,是的中點(diǎn),以為折痕將向上折起,變?yōu)?/span>,且平面平面.
(Ⅰ)求證:;
(Ⅱ)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三個班共有學(xué)生100人,為調(diào)查他們的體育鍛煉情況,通過分層抽樣獲取了部分學(xué)生一周的鍛煉時間,數(shù)據(jù)如下表(單位:小時).
班 | 6 | 7 | ||
班 | 6 | 7 | 8 | |
班 | 5 | 6 | 7 | 8 |
(Ⅰ)試估計(jì)班學(xué)生人數(shù);
(Ⅱ)從班和班抽出來的學(xué)生中各選一名,記班選出的學(xué)生為甲,班選出的學(xué)生為乙,若學(xué)生鍛煉相互獨(dú)立,求甲的鍛煉時間大于乙的鍛煉時間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線段上運(yùn)動,設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當(dāng)△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,,均與底面垂直,且為直角梯形,,,,,分別為線段,的中點(diǎn),為線段上任意一點(diǎn).
(1)證明:平面.
(2)若,證明:平面平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com