【題目】如圖,已知中,角的對邊分別為,.
(Ⅰ)若,求面積的最大值;
(Ⅱ)若,求.
【答案】(Ⅰ); (Ⅱ).
【解析】【試題分析】(Ⅰ)先運用余弦定理建立方程,再運用基本不等式與三角形的面積公式求解; (Ⅱ)先運用正弦定理將邊化為角的關(guān)系,再借助三角變換公式進(jìn)行求解:
(Ⅰ)由余弦定理得, ………………………………………2分
,當(dāng)且僅當(dāng)時取等號;
解得 , ………………………………………………………………………………………4分
故,即面積的最大值為.………………6分
(Ⅱ)因為,由正弦定理得,…………………………………………8分
又,故 ,
,…………………………………………10分
,. ………………………………………………12分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】四棱錐P﹣ABCD中,底面ABCD是邊長為8的菱形,∠BAD=,若PA=PD=5,平面PAD⊥平面ABCD.
(1)求四棱錐P﹣ABCD的體積;
(2)求證:AD⊥PB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)上為增函數(shù).
(1)求實數(shù)的取值范圍;
(2)若函數(shù)的圖象有三個不同的交點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)的圖象經(jīng)過P(3,4)點,求a的值;
(2)比較大小,并寫出比較過程;
(3)若,求a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)選修4—5:不等式選講
已知.
(1)關(guān)于的不等式恒成立,求實數(shù)的取值范圍;
(2)設(shè),且,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為菱形,G為AC與BD的交點,BE⊥平面ABCD,
(1)證明:平面AEC⊥平面BED.
(2)若∠ABC=120°,AE⊥EC,三棱錐E-ACD的體積為,求該三棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中, 是拋物線的焦點, 是拋物線上位于第一象限內(nèi)的任意一點,過三點的圓的圓心為,點到拋物線的準(zhǔn)線的距離為
(1)求拋物線的方程;
(2)若點的橫坐標(biāo)為,直線與拋物線有兩個不同的交點 與圓有兩個不同的交點,求當(dāng)時, 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國電子商務(wù)蓬勃發(fā)展. 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達(dá)516億元人民幣,與此同時,相關(guān)管理部門推出了針對該網(wǎng)購平臺的商品和服務(wù)的評價系統(tǒng). 從該評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計,網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)都滿意的交易為80次.
(Ⅰ) 根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有99%的把握認(rèn)為“網(wǎng)購者對商品滿意與對服務(wù)滿意之間有關(guān)系”?
對服務(wù)滿意 | 對服務(wù)不滿意 | 合計 | |
對商品滿意 | 80 | ||
對商品不滿意 | |||
合計 | 200 |
(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進(jìn)行的3次購物中,設(shè)對商品和服務(wù)都滿意的次數(shù)為隨機變量,求的分布列和數(shù)學(xué)期望.
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com