設函數(shù)f(x)=
a3
x3+bx2+4cx+d
的圖象關于原點對稱,f(x)的圖象在點P(1,m)處的切線的斜率為-6,且當x=2時f(x)有極值.
(Ⅰ)求a、b、c、d的值;
(Ⅱ)求f(x)的所有極值.
分析:(I)欲求實數(shù)a、b、c、d的值,利用在x=1處的切線方程,只須求出其斜率的值即可,故先利用導數(shù)求出在x=1處的導函數(shù)值,再結合導數(shù)的幾何意義即可求出切線的斜率.從而問題解決.
(II)把(1)求出的實數(shù)a、b、c、d的值代入導函數(shù)中確定出解析式,令導函數(shù)等于0求出x的值,根據(jù)x的值分區(qū)間討論導函數(shù)的正負,進而得到函數(shù)的單調(diào)區(qū)間,得到函數(shù)的極大值和極小值.
解答:解:(Ⅰ)由函數(shù)f(x)的圖象關于原點對稱,得f(-x)=-f(x)
-
a
3
x3+bx2-4cx+d=-
a
3
x3-bx2-4cx-d
,∴b=0,d=0.
f(x)=
a
3
x3+4cx
,∴f'(x)=ax2+4c.
f′(1)=a+4c=-6
f′(2)=4a+4c=0
,即
a+4c=-6
4a+4c=0
.∴a=2,c=-2.
(Ⅱ)由(Ⅰ)知f(x)=
2
3
x3-8x
,∴f'(x)=2x2-8=2(x2-4).
由f(x)>0,得x2-4>0,∴x>2或x<-2.
x (-∞,-2) -2 (-2,2) 2 (2,+∞)
f'(x) - 0 + 0 -
f(x) 極小 極大
f(x)極大=f(-2)=
32
3
;f(x)極小=f(2)=-
32
3
點評:此題考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,會利用導函數(shù)的正負判斷函數(shù)的單調(diào)性并根據(jù)函數(shù)的增減性得到函數(shù)的極值,是一道中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x,y)=(1+
m
y
)x(m>0,y>0)

(1)當m=3時,求f(6,y)的展開式中二項式系數(shù)最大的項;
(2)若f(4,y)=a0+
a1
y
+
a2
y2
+
a3
y3
+
a4
y4
且a3=32,求
4
i=0
ai

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2x
x+1
,且a1=
1
2
,  an+1=f(an)
,其中n=1,2,3,….
(I)計算a2,a3的值;
(II)設a2=2,求證:數(shù)列{bn}為等比數(shù)列;
(III)求證:
1
2
an<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
2x
x+1
,且a1=
1
2
,  an+1=f(an)
,其中n=1,2,3,….
(I)計算a2,a3,a4的值;
(II)猜想數(shù)列{an}的通項公式,并用數(shù)字歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•自貢一模)設函數(shù)f(x)=x-ln(x+
1+x2
)

(Ⅰ) 討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若x≥0時,恒有f(x)≤ax3,試求實數(shù)a的取值范圍;
(Ⅲ)令an=
1
9
(
1
2
)6n+ln[(
1
2
)
2n
+
1+(
1
2
)
4n
](n∈N*)
,試證明:a1+a2+a3+…+an
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x-1
x
log2(x-1)-log2x
(x>1).
(I)求函數(shù)f(x)的最小值;
(Ⅱ)若m,t∈R+,且
1
m
+
1
t
=1
,求證:tlo
g
 
2
m+mlo
g
 
2
t≤mt

(Ⅲ)若a1,a2a3,…,a2nR+,且
1
a1
+
1
a2
+
1
a3
+…+
1
a2n
=1
,求證:
lo
g
 
2
a1
a1
+
lo
g
 
2
a2
a2
+
lo
g
 
2
a3
a3
+…+
lo
g
 
2
a2n
a2n
≤n

查看答案和解析>>

同步練習冊答案