【題目】繳納個人所得稅是收入達到繳納標準的公民應盡的義務.

①個人所得稅率是個人所得稅額與應納稅收入額之間的比例;

②應納稅收入額=月度收入-起征點金額-專項扣除金額(三險一金等);

2018831日,第十三屆全國人民代表大會常務委員會第五次會議《關(guān)于修改中華人民共和國個人所得稅法的決定》,將個稅免征額(起征點金額)由3500元提高到5000.下面兩張表格分別是2012年和2018年的個人所得稅稅率表:

201211日實行:

級數(shù)

應納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過1500元的部分

3

0

超過1500元至4500元的部分

10

105

超過4500元至9000元的部分

20

555

超過9000元至35000元的部分

25

1005

超過35000元至55000元的部分

30

2755

超過55000元至80000元的部分

35

5505

超過80000元的部分

45

13505

2018101日試行:

級數(shù)

應納稅收入額(含稅)

稅率(

速算扣除數(shù)

不超過3000元的部分

3

0

超過3000元至12000元的部分

10

210

超過12000元至25000元的部分

20

1410

超過25000元至35000元的部分

25

2660

超過35000元至55000元的部分

30

4410

超過55000元至80000元的部分

35

7160

超過80000元的部分

45

15160

1)何老師每月工資收入均為13404元,專項扣除金額3710元,請問何老師10月份應繳納多少元個人所得稅?若與9月份相比,何老師增加收入多少元?

2)對于財務人員來說,他們計算個人所得稅的方法如下:應納個人所得稅稅額=應納稅收入額×適用稅率-速算扣除數(shù),請解釋這種計算方法的依據(jù)?

【答案】(1)何老師10月份應繳納元個人所得稅,增加收入元(2)詳見解析

【解析】

1)先計算出月份的扣稅,再計算出月份的扣稅,兩者作差,計算出何老師增加的收入.

(2)直接按當前級數(shù)稅率計算,則多算了前面級數(shù)的金額,所以要扣除.這樣計算可以減少運算量,能使財務人員迅速計算出個人所得稅.

110月份,,∴;9月份,,∴;增加收入元;

2)速算扣除數(shù)等于按當前級數(shù)稅率計算后,前面級數(shù)多算的金額,所以扣除,

201810月的表中,,,依此類推.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知矩形中,、分別是、上的點,,,,的中點,現(xiàn)沿著翻折,使平面平面.

1的中點,求證:平面.

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為評估設(shè)備生產(chǎn)某種零件的性能,從設(shè)備生產(chǎn)零件的流水線上隨機抽取100件零件作為樣本,測量其直徑后,整理得到下表:

直徑

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計算,樣本的平均值,標準差,以頻率值作為概率的估計值,用樣本估計總體.

(1)將直徑小于等于或直徑大于的零件認為是次品,從設(shè)備的生產(chǎn)流水線上隨意抽取3個零件,計算其中次品個數(shù)的數(shù)學期望

(2)為評判一臺設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為,并根據(jù)以下不等式進行評判(表示相應事件的概率):①;②;③.評判規(guī)則為:若同時滿足上述三個不等式,則設(shè)備等級為甲;僅滿足其中兩個,則等級為乙;若僅滿足其中一個,則等級為丙;若全部不滿足,則等級為丁,試判斷設(shè)備的性能等級并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱ABC-A1B1C1中,AB=AC,A1在底面ABC的射影為BC的中點,D是B1C1的中點.證明:A1D⊥平面A1BC;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2015·湖南)如下圖,直三棱柱ABCA1B1C1的底面是邊長為2的正三角形,E、F分別是BC、CC1的中點.

(1)證明:平面AEF⊥平面B1BCC1;

(2)若直線A1C與平面A1ABB1所成的角為45°,求三棱錐FAEC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)曲線在點處的切線斜率為,求該切線方程;

(2)若函數(shù)在區(qū)間上恒成立,且存在使得,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),xR

1)判斷函數(shù)的奇偶性,并說明理由;

2)利用函數(shù)單調(diào)性定義證明:上是增函數(shù);

3)若對任意的xR,任意的 恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知圓的圓心為,半徑為.以極點為原點,極軸方向為軸正半軸方向,利用相同單位長度建立平面直角坐標系,直線的參數(shù)方程為為參數(shù),).

(Ⅰ)寫出圓的極坐標方程和直線的普通方程;

(Ⅱ)若直線與圓交于、兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,T是由A的子集組成的集合,滿足性質(zhì):空集和屬于,且任意兩個元素的交和并也屬于T,

(1)當T的元素個數(shù)為2時,請寫出所有符合條件的T.

(2)當T的元素個數(shù)為3時,請寫出所有符合條件的T.

(3)求所有符合條件的T的個數(shù).

查看答案和解析>>

同步練習冊答案