【題目】橢圓,是橢圓與軸的兩個交點,為橢圓C的上頂點,設直線的斜率為,直線的斜率為,.
(1)求橢圓的離心率;
(2)設直線與軸交于點,交橢圓于、兩點,且滿足,當的面積最大時,求橢圓的方程.
【答案】(1)(2)
【解析】分析:(1)由題意可得M(0,b),A(﹣a,0),B(a,0).由斜率公式可得k1,k2,再由條件結合離心率公式計算即可得到所求;
(2)由(1)知,得a2=3c2,b2=2c2,可設橢圓C的方程為:2x2+3y2=6c2,設直線l的方程為:x=my﹣,直線l與橢圓交于P,Q兩點,聯(lián)立方程,運用判別式大于0和韋達定理,結合向量共線的坐標表示,求得S△OPQ,化簡運用基本不等式可得最大值,進而得到a,b,c,即有橢圓方程.
詳解:(1),, ,,
, .
(2)由(1)知,得,
可設橢圓的方程為:
設直線的方程為:,直線與橢圓交于 兩點
得
因為直線與橢圓相交,所以,
由韋達定理:,.
又,所以,代入上述兩式有:,
所以
,
當且僅當時,等號成立, 此時,
代入,有成立,所以所求橢圓的方程為:.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)的定義域為(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=a-.
(1)求f(0);
(2)探究f(x)的單調性,并證明你的結論;
(3)若f(x)為奇函數(shù),求滿足f(ax)<f(2)的x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠的某車間共有位工人,其中的人愛好運動。經(jīng)體檢調查,這位工人的健康指數(shù)(百分制)如下莖葉圖所示。體檢評價標準指出:健康指數(shù)不低于者為“身體狀況好”,健康指數(shù)低于者為“身體狀況一般”。
(1)根據(jù)以上資料完成下面的列聯(lián)表,并判斷有多大把握認為“身體狀況好與愛好運動有關系”?
身體狀況好 | 身體狀況一般 | 總計 | |
愛好運動 | |||
不愛好運動 | |||
總計 |
(2)現(xiàn)將位工人的健康指數(shù)分為如下組:,,,,,其頻率分布直方圖如圖所示。計算該車間中工人的健康指數(shù)的平均數(shù),由莖葉圖得到真實值記為,由頻率分布直方圖得到估計值記為,求與的誤差值;
(3)以該車間的樣本數(shù)據(jù)來估計該廠的總體數(shù)據(jù),若從該廠健康指數(shù)不低于者中任選人,設表示愛好運動的人數(shù),求的數(shù)學期望。
附:。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某企業(yè)的兩座建筑物AB,CD的高度分別為20m和40m,其底部BD之間距離為20m.為響應創(chuàng)建文明城市號召,進行亮化改造,現(xiàn)欲在建筑物AB的頂部A處安裝一投影設備,投影到建筑物CD上形成投影幕墻,既達到亮化目的又可以進行廣告宣傳.已知投影設備的投影張角∠EAF為,投影幕墻的高度EF越小,投影的圖像越清晰.設投影光線的上邊沿AE與水平線AG所成角為α,幕墻的高度EF為y(m).
(1)求y關于α的函數(shù)關系式,并求出定義域;
(2)當投影的圖像最清晰時,求幕墻EF的高度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在區(qū)間上的函數(shù)的圖象關于直線對稱,當時,.
(1)作出的圖象;
(2)求的解析式;
(3)若關于x的方程有解,將方程所有解的和記作M,結合(1)中的圖象,求M的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),若函數(shù)恰好有兩個零點,則實數(shù)等于(為自然對數(shù)的底數(shù))( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com