【題目】已知圓,某拋物線的頂點為原點,焦點為圓心,經(jīng)過點的直線交圓, 兩點,交此拋物線于, 兩點,其中, 在第一象限, , 在第二象限.

(1)求該拋物線的方程;

(2)是否存在直線,使的等差中項?若存在,求直線的方程;若不存在,請說明理由.

【答案】(1)拋物線的方程為 (2)存在滿足要求的直線,其方程為

【解析】試題分析:(1)圓方程可化為可化為 圓心的坐標為, 拋物線的方程為;(2)由等差數(shù)列性質可得

,再由, , 存在滿足要求的直線,其方程為.

試題解析:

(1)可化為,

根據(jù)已知拋物線的方程為).

∵圓心的坐標為,∴,解得.

∴拋物線的方程為.

(2)∵的等差中項,圓的半徑為2,∴.

.

由題知,直線的斜率存在,故可設直線的方程為,

,

,得,

, .

,解得.

∴存在滿足要求的直線,其方程為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=x3+x,x∈R,當0≤θ≤π時,f(mcosθ)+f(sinθ﹣2m)<0恒成立,則實數(shù)m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)在點處切線方程為y=3x+b,求a,b的值;

(Ⅱ)當a>0時,求函數(shù)在[1,2]上的最小值;

(Ⅲ)設,若對任意 ,均存在,使得,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 =(1,2), =(﹣3,2), 當k=時,(1)k + ﹣3 垂直;
當k=時,(2)k + ﹣3 平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加考試的學生中抽出60名學生,將其成績(均為整數(shù))分成六組[40,50),[50,60)…[90,100]后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題: (Ⅰ) 求成績落在[70,80)上的頻率,并補全這個頻率分布直方圖;
(Ⅱ) 估計這次考試的及格率(60分及以上為及格)和平均分;
(Ⅲ) 設學生甲、乙的成績屬于區(qū)間[40,50),現(xiàn)從成績屬于該區(qū)間的學生中任選兩人,求甲、乙中至少有一人被選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為增強市民的節(jié)能環(huán)保意識,鄭州市面向全市征召義務宣傳志愿者. 從符合條件的500名志愿者中隨機抽取100名,其年齡頻率分布直方圖如圖所示,其中年齡分組區(qū)是: .

(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計這500名志愿者中年齡在歲的人數(shù);

(Ⅱ)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取10名參加中心廣場的宣傳活動,再從這10名志愿者中選取3名擔任主要負責人. 記這3名志愿者中“年齡低于35歲”的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= (其中p2+q2≠0),且存在公差不為0的無窮等差數(shù)列{an},使得函數(shù)在其定義域內(nèi)還可以表示為f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1 , a2的值(用p,q表示);
(2)求{an}的通項公式;
(3)當n∈N*且n≥2時,比較(an1an與(an 的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結論正確的是(
A.各個面都是三角形的幾何體是三棱錐
B.一平面截一棱錐得到一個棱錐和一個棱臺
C.棱錐的側棱長與底面多邊形的邊長相等,則該棱錐可能是正六棱錐
D.圓錐的頂點與底面圓周上的任意一點的連線都是母線

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知 (n∈N*)的展開式中第五項的系數(shù)與第三項的系數(shù)的比是10:1.
(1)求在展開式中含x 的項;
(2)求展開式中系數(shù)最大的項.

查看答案和解析>>

同步練習冊答案