9.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長(zhǎng)為2$\sqrt{2}$,則k=±1.

分析 由題意求出圓心坐標(biāo)和半徑,由點(diǎn)到直線的距離公式求出圓心到直線y=kx+3的距離d,根據(jù)弦長(zhǎng)公式列出方程求出k的值.

解答 解:由題意得,圓心坐標(biāo)是(2,3),半徑r=2,
∴圓心到直線y=kx+3的距離d=$\frac{|2k-3+3|}{\sqrt{{k}^{2}+1}}$=$\frac{|2k|}{\sqrt{{k}^{2}+1}}$,
∵截得的弦長(zhǎng)為2$\sqrt{2}$,且${r}^{2}=xxgfjmy^{2}+(\frac{l}{2})^{2}$,
∴${2}^{2}=(\frac{|2k|}{\sqrt{{k}^{2}+1}})^{2}+(\sqrt{2})^{2}$,解得k=±1,
故答案為:±1.

點(diǎn)評(píng) 本題考查直線與圓相交時(shí)弦長(zhǎng)問題,以及點(diǎn)到直線的距離公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)f(x)=(4-x2)(ax2+bx+5)的圖象關(guān)于直線$x=-\frac{3}{2}$對(duì)稱,則f(x)的最大值是36.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)計(jì)流程圖計(jì)算S=1+2+3+…+100,并寫出相應(yīng)語(yǔ)句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知正三角形ABC的邊長(zhǎng)為2,D、E、F分別是BC、CA、AB的中點(diǎn).
(1)在三角形內(nèi)部隨機(jī)取一點(diǎn)P,求滿足|PB|≥1且|PC|≥1的概率;
(2)在A、B、C、D、E、F這6點(diǎn)中任選3點(diǎn),記這3點(diǎn)圍成圖形的面積為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一點(diǎn)D,則使△ABD是以∠BAD為鈍角的三角形的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示,A,B兩點(diǎn)5條連線并聯(lián),它們?cè)趩挝粫r(shí)間內(nèi)能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時(shí)間內(nèi)都通過的最大信息總量為ξ,則P(ξ≥8)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x2-2x-c,x∈[-1,2],任取c∈[-5,5],則使f(x)<0恒成立的概率是(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知Rt△ABC中,兩直角邊分別為a、b,斜邊和斜邊上的高分別為c、h,則$\frac{c+2h}{a+b}$的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知cos2α+cos2β+cos2γ=1,則sinαsinβsinγ的最大值為(  )
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{6}}{9}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案