在△ABC中,若(a2+c2-b2)•tanB=
3
•ac,則角B=
 
考點:余弦定理
專題:解三角形
分析:已知等式變形后,利用余弦定理化簡,再利用同角三角函數(shù)間基本關(guān)系求出sinB的值,即可確定出B度數(shù).
解答: 解:由余弦定理得:cosB=
a2+c2-b2
2ac
,即a2+c2-b2=2accosB,
代入已知等式得:2accosB•tanB=
3
•ac,即sinB=
3
2

∵B為三角形內(nèi)角,
∴B=60°或120°,
故答案為:60°或120°
點評:此題考查了余弦定理,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=logax(其中a為常數(shù)且a>0,a≠1)滿足f(2)>f(3)且f(
1
2
)=1則f(1-
1
x
)>1的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a2=7,a4=15,則前20項的和S20=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面區(qū)域如圖所示,若使目標(biāo)函數(shù)z=x+ay(a>0)取得最大值的最優(yōu)解有無窮多個,則a的值是( 。
A、
3
2
B、1
C、
2
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊長,a=
7
,b=2,1+2cos(B+C)=0.
(1)求角A的大;
(2)求邊c的大小;
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
3x2
1-2x
+(2x+1)0
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(x,-2)且
a
+
b
與2
a
-
b
平行,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|3≤x<10},B={x|2<x<7},C={x|x<a},
(1)求A∪B;
(2)求(∁RA)∩B;
(3)若A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,
(1)求證:面BB1DD1⊥面AB1C;
(2)求二面角A-B1C-D1的平面角的余弦值(理);
(3)求直線B1C與平面ABCD所成角(文).

查看答案和解析>>

同步練習(xí)冊答案