Processing math: 97%
7.若實(shí)數(shù)a,b∈(0,1),且滿足(1-a)b>14,則a,b的大小關(guān)系是a<b.

分析 可根據(jù)條件,利用不等式的性質(zhì)即可得到答案.

解答 解:∵a、b∈(0,1),且滿足(1-a)b>14,
1ab12,又1a+b21ab,
1a+b212,
∴a<b.
故答案為:a<b.

點(diǎn)評 本題考查利用基本不等式比較大小,難點(diǎn)在于將條件關(guān)系式兩端開方,在應(yīng)用基本不等式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.圓C:x2+y2-2x-4y-31=0,則圓上到直線3x+4y+4=0距離為3的點(diǎn)共有3個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)f(x)=1x+1x+3的定義域?yàn)椋ā 。?table class="qanwser">A.(-∞,1]B.(-3,1]C.[-3,1]D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若a+a-1=3,則a12+a12a12a12的值為±5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知正方體ABCD-A1B1C1D1中,E為側(cè)面BCC1B1的中心.若AE=zAA1+xAB+yAD,則x+y+z的值為( �。�
A.1B.32C.2D.34

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.求滿足下列條件的直線的方程:
(1)過點(diǎn)P(3,0),且與2x+y-5=0垂直
(2)平行于過點(diǎn)A(1,-2)和B(0,2)的直線,且這兩條直線間的距離是121717

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線y2+x2m=1的一個焦點(diǎn)與拋物線x2=8y的焦點(diǎn)相同,則此雙曲線的方程為( �。�
A.x23y2=1B.y2-x2=1C.y2-x2=1D.y2x23=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)向量a=(x-2,2),=(4,y),c=(x,y),x,y∈R,若a\overrightarrow,則|c|的最小值是( �。�
A.255B.455C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓具有如下性質(zhì):若橢圓的方程為x2a2+y2b2=1ab0,則橢圓在其上一點(diǎn)A(x0,y0)處的切線方程為x0xa2+y0yb2=1,試運(yùn)用該性質(zhì)解決以下問題:已知橢圓C1x22+y2=1和橢圓{C_2}:\frac{x^2}{4}+{y^2}=λ(λ>1,λ為常數(shù)).

(1)如圖(1),點(diǎn)B為C1在第一象限中的任意一點(diǎn),過B作C1的切線l,l分別與x軸和y軸的正半軸交于C,D兩點(diǎn),求△OCD面積的最小值;
(2)如圖(2),過橢圓C2上任意一點(diǎn)P作C1的兩條切線PM和PN,切點(diǎn)分別為M,N,當(dāng)點(diǎn)P在橢圓C2上運(yùn)動時,是否存在定圓恒與直線MN相切?若存在,求出圓的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案