【題目】已知點(diǎn)為橢圓上任意一點(diǎn),直線與圓交于兩點(diǎn),點(diǎn)為橢圓的左焦點(diǎn).

(Ⅰ)求橢圓的離心率及左焦點(diǎn)的坐標(biāo);

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說明理由.

【答案】(1);(2)證明見解析;(3)答案見解析.

【解析】

1)由題意可得,,據(jù)此確定離心率即可;

2)由題意可得.分類討論兩種情況證明直線與橢圓相切即可;

3)設(shè),,當(dāng)時(shí),易得.當(dāng)時(shí),聯(lián)立直線方程與橢圓方程可得,結(jié)合韋達(dá)定理和平面向量的數(shù)量積運(yùn)算法則計(jì)算可得.據(jù)此即可證得為定值

1)由題意,

所以離心率,左焦點(diǎn)

2)由題知,,即.

當(dāng)時(shí)直線方程為,直線與橢圓相切.

當(dāng)時(shí),由

所以

故直線與橢圓相切.

3)設(shè),,

當(dāng)時(shí),,,

,

所以,即

當(dāng)時(shí),由,

,

因?yàn)?/span>

所以,即

為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在中,,,點(diǎn)在拋物線.

1)求的邊所在的直線方程;

2)求的面積最小值,并求出此時(shí)點(diǎn)的坐標(biāo);

3)若為線段上的任意一點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線與圓有公共點(diǎn),且圓在點(diǎn)處的切線與雙曲線的一條漸近線平行,則該雙曲線的實(shí)軸長(zhǎng)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】教材曾有介紹:圓上的點(diǎn)處的切線方程為。我們將其結(jié)論推廣:橢圓上的點(diǎn)處的切線方程為,在解本題時(shí)可以直接應(yīng)用。已知,直線與橢圓有且只有一個(gè)公共點(diǎn).

(1)求的值;

(2)設(shè)為坐標(biāo)原點(diǎn),過橢圓上的兩點(diǎn)分別作該橢圓的兩條切線、,且交于點(diǎn)。當(dāng)變化時(shí),求面積的最大值;

(3)在(2)的條件下,經(jīng)過點(diǎn)作直線與該橢圓交于、兩點(diǎn),在線段上存在點(diǎn),使成立,試問:點(diǎn)是否在直線上,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形中,,,四邊形為矩形,且平面,.

(1)求證:平面;

(2)點(diǎn)在線段上運(yùn)動(dòng),當(dāng)點(diǎn)在什么位置時(shí),平面與平面所成銳二面角最大,并求此時(shí)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百一十五里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還其大意為:“有一個(gè)人走315里路,第一天健步行走,從第二天起腳痛,每天走的路程為前一天的一半,走了 6天后到達(dá)目的地. ”則該人最后一天走的路程為( )

A.20里B.10里C.5 里D.2.5 里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場(chǎng)所.天壇公園中的圜丘臺(tái)共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環(huán)至第九環(huán)共有九環(huán),中層壇從第十環(huán)至第十八環(huán)共有九環(huán),下層壇從第十九環(huán)至第二十七環(huán)共有九環(huán);第一環(huán)的扇面形石有9塊,從第二環(huán)起,每環(huán)的扇面形石塊數(shù)比前一環(huán)多9塊,則第二十七環(huán)的扇面形石塊數(shù)是______;上、中、下三層壇所有的扇面形石塊數(shù)是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓與圓關(guān)于直線對(duì)稱.

1)求圓的方程;

2)過點(diǎn)作兩條相異直線分別與圓相交于、兩點(diǎn),若直線的傾斜角互補(bǔ),問直線與直線是否垂直?請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正方形沿對(duì)角線折成直二面角,下列結(jié)論:①異面直線所成的角為;②;③是等邊三角形;④二面角的平面角正切值是;其中正確結(jié)論是______.(寫出你認(rèn)為正確的所有結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案