【題目】已知是定義在上的奇函數(shù),滿足,若,則( )
A. 1 B. 0 C. 1 D. 2019
【答案】B
【解析】
根據(jù)題意,由函數(shù)滿足f(1﹣x)=f(x+1),分析可得f(﹣x)=f(x+2),結(jié)合函數(shù)為奇函數(shù)可得f(x)=f(x+2),則函數(shù)f(x)為周期為4的周期函數(shù),又由f(1)、f(-1)與f(2)及f(0)的值分析可得f(1)=f(5)=……=f(2017)=1,f(3)=f(7)=……= f(2019)=-1,f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,
將其相加即可得答案.
根據(jù)題意,函數(shù)f(x)滿足f(1﹣x)=f(x+1),則函數(shù)f(x)的圖象關(guān)于直線x=1對(duì)稱,則有f(﹣x)=f(x+2),
又由函數(shù)f(x)為奇函數(shù),則f(﹣x)=-f(x),則有f(x)=-f(x+2),則f(x+2)=- f(x+4),可得f(x)= f(x+4)
則函數(shù)f(x)為周期為4的周期函數(shù),
又由f(1)=1,則f(1)=f(5)=……=f(2017)=1,
f(-1)=- f(1)=-1,則f(3)=f(7)=……= f(2019)=-1,
又f(-2)=f(2)=-f(2),則f(2)=0,且f(0)=0,所以f(2)=f(4)=f(6)=f(8)=……=f(2018)=0,
則f(1)+f(2)+f(3)+…+f(2019)=505-505+0=0;
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)為正方形邊上異于點(diǎn)的動(dòng)點(diǎn),將沿翻折成,使得平面平面,則下列說(shuō)法中正確的是__________.(填序號(hào))
(1)在平面內(nèi)存在直線與平行;
(2)在平面內(nèi)存在直線與垂直
(3)存在點(diǎn)使得直線平面
(4)平面內(nèi)存在直線與平面平行.
(5)存在點(diǎn)使得直線平面
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,且,向量, .
(1)求函數(shù)的解析式,并求當(dāng)時(shí), 的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí), 的最大值為5,求的值;
(3)當(dāng)時(shí),若不等式在上恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 命題“若,則”的逆否命題為真命題
B. 命題“若,則”的否命題為“若,則”
C. 命題“,使得”的否定是“,都有”
D. 若,則“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動(dòng)點(diǎn).已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù)b,函數(shù)f(x)恒有兩個(gè)相異的不動(dòng)點(diǎn),求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點(diǎn)的橫坐標(biāo)是函數(shù)f(x)的不動(dòng)點(diǎn),且A,B兩點(diǎn)關(guān)于直線y=kx+對(duì)稱,求b的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分12分)
一個(gè)盒子中裝有4張卡片,每張卡片上寫有1個(gè)數(shù)字,數(shù)字分別是1、2、3、4,現(xiàn)從盒子中隨機(jī)抽取卡片.
(Ⅰ)若一次從中隨機(jī)抽取3張卡片,求3張卡片上數(shù)字之和大于或等于7的概率;
(Ⅱ)若第一次隨機(jī)抽取1張卡片,放回后再隨機(jī)抽取1張卡片,求兩次抽取的卡片中至少一次抽到數(shù)字2的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,矩形中,,是的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且,如圖2.
(1)求證:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的30個(gè)零件編號(hào)為01,02,…,19,30,現(xiàn)利用如下隨機(jī)數(shù)表從中抽取5個(gè)進(jìn)行檢測(cè). 若從表中第1行第5列的數(shù)字開(kāi)始,從左往右依次讀取數(shù)字,則抽取的第5個(gè)零件編號(hào)為( )
34 57 07 86 36 04 68 96 08 23 23 45 78 89 07 84 42 12 53 31 25 30 07 32 86 |
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42 |
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(請(qǐng)寫出式子在寫計(jì)算結(jié)果)有4個(gè)不同的小球,4個(gè)不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):
(1)共有多少種方法?
(2)若每個(gè)盒子不空,共有多少種不同的方法?
(3)恰有一個(gè)盒子不放球,共有多少種放法?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com