規(guī)定=,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.

(1)求的值.

(2)設(shè)x>0,當(dāng)x為何值時(shí),取最小值?

(3)我們知道組合數(shù)具有如下兩個(gè)性質(zhì):

=;②+=.

是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,請(qǐng)寫出推廣的形式,并給出證明;若不能,則說(shuō)明理由.

(4)已知組合數(shù)是正整數(shù),證明當(dāng)x∈Z,m是正整數(shù)時(shí),Z.

 

思路解析:本題是有關(guān)組合數(shù)知識(shí)的延伸,著重考查考生接受新知識(shí)的能力.在解決過(guò)程中,要注意充分利用題目中的Cmx的定義以及結(jié)合所學(xué)的相關(guān)知識(shí),從而將問(wèn)題解決.

解:(1)==-680.

(2)==(x+-3),

∵x>0,x+≥2,當(dāng)且僅當(dāng)x=時(shí),等號(hào)成立.∴當(dāng)x=時(shí),取得最小值.

(3)性質(zhì)①不能推廣.例如當(dāng)x=時(shí),有意義,但無(wú)意義;性質(zhì)②能推廣,它的推廣形式是+=,x∈R,m是正整數(shù),事實(shí)上

    當(dāng)m=1時(shí),有+=x+1=,當(dāng)m≥2時(shí),

Cmx+Cm-1x=+=

(+1)== ,

(4)證明:當(dāng)x≥m時(shí),組合數(shù)Z.

    當(dāng)0≤x<m時(shí),=0∈Z,當(dāng)x<0時(shí),∵-x+m+1>0,

==(-1)m,∈Z.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且Cx0=1,這是組合數(shù)Cnm(n、m是正整數(shù),且m≤n)的一種推廣.
(1) 求C-155的值;
(2)組合數(shù)的兩個(gè)性質(zhì):①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m.是否都能推廣到Cxm(x∈R,m是正整數(shù))的情形?
若能推廣,則寫出推廣的形式并給出證明;若不能,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定Axm=x(x-1)(x-2)•…•(x-m+1),其中x∈R,m∈N*.
函數(shù)f(x)=aAx+13+3bAx2+1(ab≠0)在x=1處取得極值,在x=2處的切線的平行向量為
OP
=(b+5,5a)

(1)求f(x)的解析式;
(2)求f(x)的單調(diào)區(qū)間;
(3)是否存在正整數(shù)m,使得方程f(x)=6x-
16
3
在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等實(shí)根?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

規(guī)定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整數(shù),且
C
0
x
=1
,這是組合數(shù)
C
m
n
(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求
C
3
-15
的值;
(2)設(shè)x>0,當(dāng)x為何值時(shí),
C
3
x
(
C
1
x
)
2
取得最小值?
(3)組合數(shù)的兩個(gè)性質(zhì);①
C
m
n
=
C
n-m
n
;②
C
m
n
+
C
m-1
n
=
C
m
n+1
.是否都能推廣到
C
m
x
(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:044

規(guī)定,其中x∈R,m是正整數(shù),且=1,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.

(1)求的值;

(2)組合數(shù)的兩個(gè)性質(zhì):

;②

是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,寫出推廣的形式并給出證明;若不能推廣,則說(shuō)明理由;

(3)已知組合數(shù)是正整數(shù),證明:當(dāng)x∈Z,m是正整數(shù)時(shí),∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年云南省高三數(shù)學(xué)一輪復(fù)習(xí)章節(jié)練習(xí):計(jì)數(shù)原理(解析版) 題型:解答題

規(guī)定Cmx=,其中x∈R,m是正整數(shù),且Cx=1,這是組合數(shù)Cmn(n、m是正整數(shù),且m≤n)的一種推廣.
(1)求C3-15的值;
(2)設(shè)x>0,當(dāng)x為何值時(shí),取得最小值?
(3)組合數(shù)的兩個(gè)性質(zhì);
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推廣到Cmx(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說(shuō)明理由.
變式:規(guī)定Axm=x(x-1)…(x-m+1),其中x∈R,m為正整數(shù),且Ax=1,這是排列數(shù)Anm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求A-153的值;
(2)排列數(shù)的兩個(gè)性質(zhì):①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整數(shù))是否都能推廣到Axm(x∈R,m是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說(shuō)明理由;
(3)確定函數(shù)Ax3的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案