【題目】已知函數(shù)f(x)=|x-m|-|2x+3m|(m>0).
(1)當m=1時,求不等式f(x)≥1的解集;
(2)對于任意實數(shù)x,t,不等式f(x)<|2+t|+|t-1|恒成立,求m的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求滿足的的值;
(2)若函數(shù)是定義在R上的奇函數(shù),函數(shù)滿足,若對任意且≠0,不等式恒成立,求實數(shù)m的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過直線x﹣y﹣1=0與直線2x+y﹣5=0的交點P.
(1)若l與直線x+3y﹣1=0垂直,求l的方程;
(2)點A(﹣1,3)和點B(3,1)到直線l的距離相等,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一片森林原面積為,計劃從某年開始,每年砍伐一些樹林,且每年砍伐面積與上一年剩余面積的百分比相等.并計劃砍伐到原面積的一半時,所用時間是10年.為保護生態(tài)環(huán)境,森林面積至少要保留原面積的.已知到今年為止,森林剩余面積為原面積的.
(1)求每年砍伐面積與上一年剩余面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)為保護生態(tài)環(huán)境,今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,等腰三角形PAD所在平面與菱形ABCD所在平面互相垂直,已知點E,F(xiàn),M,N分別為邊BA,BC,AD,AP的中點.
(1)求證:AC⊥PE;
(2)求證:PF∥平面BNM.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;
(2)若三角形有一個內(nèi)角為,周長為定值,求面積的最大值;
(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),
∴
,
而,,,則,
但是,其中等號成立的條件是,于是與矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】南京市自年成功創(chuàng)建“國家衛(wèi)生城市”以來,已經(jīng)連續(xù)三次通過“國家衛(wèi)生城市”復審,年下半年,南京將迎來第四次復審.為了了解市民綠色出行的意識,現(xiàn)從某單位隨機抽取名職工,統(tǒng)計了他們一周內(nèi)路邊停車的時間(單位:),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:
組號 | 分組 | 頻數(shù) |
(1)從該單位隨機選取一名職工,試估計其在該周內(nèi)路邊停車的時間少于小時的概率;
(2)求頻率分布直方圖中,的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結(jié)論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )
A.①③B.③④C.①②D.②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設直線系M:xcosθ+(y﹣2)sinθ=1(0≤θ≤2π),對于下列四個命題:
A.M中所有直線均經(jīng)過一個定點 |
B.存在定點P不在M中的任一條直線上 |
C.對于任意整數(shù)n(n≥3),存在正n邊形,其所有邊均在M中的直線上 |
D.M中的直線所能圍成的正三角形面積都相等 |
其中真命題的代號是 (寫出所有真命題的代號).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com