6.已知函數(shù)f(x)=mln(x+1),g(x)=$\frac{x}{x+1}({x>-1})$.
(1)當(dāng)m=1時,求函數(shù)y=f(x)在點(0,f(0))處的切線方程.
(1)討論函數(shù)F(x)=f(x)-g(x)在(-1,+∞)上的單調(diào)性;
(2)若y=f(x)與y=g(x)的圖象有且僅有一條公切線,試求實數(shù)m的值.

分析 (1)求出函數(shù)的導(dǎo)數(shù),計算f(0),f′(0),求出切線方程即可;
(2)求出函數(shù)的導(dǎo)數(shù),通過討論m的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(3)求出切線方程,聯(lián)立方程組,得到$g(b)=2mln({b+1})+\frac{2}{b+1}+mlnm-m-1$,根據(jù)函數(shù)的單調(diào)性求出a,b的值,從而求出m的值即可.

解答 解:(1)m=1時,f(x)=ln(x+1),f′(x)=$\frac{1}{x+1}$,
故f(0)=0,f′(0)=1,
故切線方程是:y=x,
即x-y=0;
(2)$F'(x)=f'(x)-g'(x)=\frac{m}{x+1}-\frac{1}{{{{({x+1})}^2}}}=\frac{{m({x+1})-1}}{{{{({x+1})}^2}}},({x>-1})$
當(dāng)m≤0時,F(xiàn)'(x)<0,函數(shù)F(x)在(-1,+∞)上單調(diào)遞減;
當(dāng)m>0時,令$F'(x)<0⇒x<-1+\frac{1}{m}$,函數(shù)F(x)在$({-1,-1+\frac{1}{m}})$上單調(diào)遞減;
$F'(x)>0⇒x>-1+\frac{1}{m}$,函數(shù)F(x)在$({-1+\frac{1}{m},+∞})$上單調(diào)遞增,
綜上所述,當(dāng)m≤0時,F(xiàn)(x)的單減區(qū)間是(-1,+∞);
當(dāng)m>0時,F(xiàn)(x)的單減區(qū)間是$({-1,-1+\frac{1}{m}})$,單增區(qū)間是$({-1+\frac{1}{m},+∞})$;
(3)函數(shù)f(x)=mln(x+1)在點(a,mln(a+1))處的切線方程為:
$y-mln({a+1})=\frac{m}{a+1}({x-a})$,即$y=\frac{m}{a+1}x+mln({a+1})-\frac{ma}{a+1}$,
函數(shù)$g(x)=\frac{x}{x+1}$在點$({b,1-\frac{1}{b+1}})$處的切線方程為:
$y-({1-\frac{1}{b+1}})=\frac{1}{{{{({b+1})}^2}}}({x-b})$,即$y=\frac{1}{{{{({b+1})}^2}}}x+\frac{b^2}{{{{({b+1})}^2}}}$.
y=f(x)與y=g(x)的圖象有且僅有一條公切線.
所以$\left\{{\begin{array}{l}{\frac{m}{a+1}=\frac{1}{{{{({b+1})}^2}}}\;\;\;\;①}\\{mln({a+1})-\frac{ma}{a+1}=\frac{b^2}{{{{({b+1})}^2}}}\;\;\;②}\end{array}}\right.$有唯一一對(a,b)滿足這個方程組,且m>0.
由(1)得:a+1=m(b+1)2代入(2)消去a,
整理得:$2mln({b+1})+\frac{2}{b+1}+mlnm-m-1=0$,關(guān)于b(b>-1)的方程有唯一解.
令$g(b)=2mln({b+1})+\frac{2}{b+1}+mlnm-m-1$,$g(b)=\frac{2m}{b+1}-\frac{2}{{{{({b+1})}^2}}}=\frac{{2[{m({b+1})-1}]}}{{{{({b+1})}^2}}}$
方程組有解時,m>0,所以g(b)在$({-1,-1+\frac{1}{m}})$單調(diào)遞減,在$({-1+\frac{1}{m},+∞})$單調(diào)遞增,
所以$g{(b)_{min}}=9({-1+\frac{1}{m}})=m-mlnm-1$,
因為b→+∞,g(b)→+∞,b→-1,g(b)→+∞,
只需m-mlnm-1=0,令σ(m)=m-lnm-1、σ'(m)=-lnm在m>0為單減函數(shù),
且m=1時,σ'(m)=0,即σ(m)max=σ(1)=0,
所以m=1時,關(guān)于b的方程$2mln({b+1})+\frac{2}{b+1}+mlnm-m-1=0$有唯一解,
此時a=b=0,公切線方程為y=x,
故m=1.

點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及公切線方程,考查分類討論思想、轉(zhuǎn)化思想,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知直線l的斜率為2,且在y軸上的截距為1,則直線l的方程為y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,已知AB=2,AC=3,$\overrightarrow{AB}$•$\overrightarrow{AC}$=4,D為△ABC所在平面內(nèi)一點,且滿足$\overrightarrow{AD}$=$\overrightarrow{AB}$+2$\overrightarrow{AC}$.
(1)求|$\overrightarrow{AD}$|;
(2)cos∠BDC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合A={1,2,3,4},集合B={3,4,5},則A∩B={3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)x∈(0,π),函數(shù)f(x)=sin(cosx)-x,g(x)=cos(sinx)-x.則下列說法正確的是( 。
A.f(x),g(x)均有零點B.f(x),g(x)都沒有有零點
C.g(x)有,f(x)沒有D.f(x)有,g(x)沒有

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.(1)化ρ=cosθ-2sinθ為直角坐標(biāo)形式并說明曲線的形狀;
(2)化曲線F的直角坐標(biāo)方程:x2+y2-5$\sqrt{{x}^{2}+{y}^{2}}$-5x=0為極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.從一批含有11只正品,2只次品的產(chǎn)品中,不放回地抽取3次,每次抽取1只,設(shè)抽得次品數(shù)為X,則E(5X+1)的值為( 。
A.$\frac{43}{13}$B.$\frac{42}{13}$C.$\frac{12}{13}$D.$\frac{6}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等差數(shù)列{an}中,2a9=a12+12,則數(shù)列{an}的前11項和S11=( 。
A.24B.48C.66D.132

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.某校從高中1200名學(xué)生中抽取50名學(xué)生進(jìn)行問卷調(diào)查,如果采用系統(tǒng)抽樣的方法,將這1200名學(xué)生從1開始進(jìn)行編號,已知被抽取到的號碼有15,則下列號碼中被抽取到的還有(  )
A.255B.125C.75D.35

查看答案和解析>>

同步練習(xí)冊答案