4.若關(guān)于x的方程9x+(a+4)•3x+4=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-8]∪[0,+∞)B.(-∞,-4)C.[-8,-4)D.(-∞,-8]

分析 令3x=t>0,由條件可得a=$\frac{{t}^{2}+4t+4}{-t}=-4-(t+\frac{4}{t})$,利用基本不等式和不等式的性質(zhì)求得實(shí)數(shù)a的取值范圍.

解答 解:令3x=t>0,則關(guān)于x的方程9x+(4+a)•3x+4=0 即 t2+(4+a)t+4=0 有正實(shí)數(shù)解.
故a=$\frac{{t}^{2}+4t+4}{-t}=-4-(t+\frac{4}{t})$,
由基本不等式可得:t+$\frac{4}{t}$≥4,當(dāng)且僅當(dāng)t=$\frac{4}{t}$時(shí),等號(hào)成立,
∴-(t+$\frac{4}{t}$)≤-4,即-4-(t+$\frac{4}{t}$)≤-8,
∴a≤-8,
∴a的取值范圍是(-∞,-8].
故選:D.

點(diǎn)評(píng) 本題考查根的存在性及根的個(gè)數(shù)判斷,考查利用基本不等式求最值問(wèn)題,同時(shí)考查轉(zhuǎn)化思想和換元法,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)$f(x)=sinxcosx-\sqrt{3}{cos^2}x$的圖象可由函數(shù)$g(x)=sin(2x+\frac{π}{3})-\frac{{\sqrt{3}}}{2}$的圖象向右平移k(k>0)個(gè)單位得到,則k的最小值為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為圓心的圓與直線(xiàn)$y=x+2\sqrt{2}$相切.
(1)求圓O的方程;
(2)圓O與x軸交于A,B兩點(diǎn),圓內(nèi)動(dòng)點(diǎn)P,使得|PA|,|PO|,|PB|成等比數(shù)列,求$\overrightarrow{PA}•\overrightarrow{PB}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知平面α,β及直線(xiàn)a滿(mǎn)足α⊥β,α∩β=AB,a∥α,a⊥AB,則( 。
A.a?βB.a⊥β
C.a∥βD.a與β相交但不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知橢圓C:$\frac{x^2}{25}+\frac{y^2}{9}$=1的左焦點(diǎn)為F,點(diǎn)M是橢圓C上一點(diǎn),點(diǎn)N是MF的中點(diǎn),O是橢圓的中點(diǎn),ON=4,則點(diǎn)M到橢圓C的左準(zhǔn)線(xiàn)的距離為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.定義在R的奇函數(shù)f(x),當(dāng)x<0時(shí),f(x)=-x2+x,則 f(2)=( 。
A.6B.-6C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知ab<0,bc<0,則直線(xiàn)ax+by+c=0通過(guò)( 。 象限.
A.第一、二、三B.第一、二、四C.第一、三、四D.第二、三、四

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖(1),已知長(zhǎng)方形ABCD中,AB=2,AD=1,M為CD的中點(diǎn),將△ADM沿AM折起,使得平面ADM⊥平面ABCM,如圖(2)E為BD的中點(diǎn).
(1)求證:CE∥平面ADM;
(2)求四面體EAMD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列結(jié)論正確的是( 。
A.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線(xiàn)都是母線(xiàn)
B.以三角形的一條邊所在直線(xiàn)為旋轉(zhuǎn)軸,其余兩邊繞旋轉(zhuǎn)軸旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)都相等,則該棱錐可能是六棱錐
D.各個(gè)面都是三角形的幾何體是三棱錐

查看答案和解析>>

同步練習(xí)冊(cè)答案