【題目】已知向量 , , (m>0,n>0),若m+n∈[1,2],則 的取值范圍是(
A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)題意,向量 , , =(3m+n,m﹣3n),
= =
令t= ,則 = t,
而m+n∈[1,2],即1≤m+n≤2,在直角坐標(biāo)系表示如圖,

t= 表示區(qū)域中任意一點(diǎn)與原點(diǎn)(0,0)的距離,
分析可得: ≤t<2,
又由 = t,
<2 ;
故選:B.
根據(jù)題意,由向量的坐標(biāo)運(yùn)算公式可得 =(3m+n,m﹣3n),再由向量模的計(jì)算公式可得 = ,可以令t= ,將m+n∈[1,2]的關(guān)系在直角坐標(biāo)系表示出來,分析可得t= 表示區(qū)域中任意一點(diǎn)與原點(diǎn)(0,0)的距離,進(jìn)而可得t的取值范圍,又由 = t,分析可得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校進(jìn)行體驗(yàn),現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50個(gè)身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.

(1)補(bǔ)全頻率分布直方圖;

(2)根據(jù)頻率分布直方圖估計(jì)這50位男生身高的中位數(shù);

(3)用分層抽樣的方法在身高為內(nèi)抽取一個(gè)容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直三棱柱中, , , 為棱的中點(diǎn).

(Ⅰ)探究直線與平面的位置關(guān)系,并說明理由;

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,角A、B、C的對(duì)邊依次為、.已知,外接圓半徑邊長為整數(shù)

(1)求∠A的正弦值;

(2)求邊長

(3)在AB、AC上分別有點(diǎn)D、E,線段DE將△ABC分成面積相等的兩部分,求線段DE長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某城市居民用水量的情況,我們獲得100位居民某年的月均用水量(單位:噸)通過對(duì)數(shù)據(jù)的處理,我們獲得了該100位居民月均用水量的頻率分布表,并繪制了頻率分布直方圖(部分?jǐn)?shù)據(jù)隱藏)

100位居民月均用水量的頻率分布表

組號(hào)

分組

頻數(shù)

頻率

1

4

0.04

2

0.08

3

15

4

22

5

6

14

0.14

7

6

8

4

0.04

9

0.02

合 計(jì)

100

(1)確定表中的值;

(2)求頻率分布直方圖中左數(shù)第4個(gè)矩形的高度;

(3)在頻率分布直方圖中畫出頻率分布折線圖;

(4)我們想得到總體密度曲線,請回答我們應(yīng)該怎么做?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足: ,且它的前n項(xiàng)和Sn有最大值,則當(dāng)Sn取到最小正值時(shí),n=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2x
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校大一新生中,來自東部地區(qū)的學(xué)生有2400人、中部地區(qū)學(xué)生有1600人、西部地區(qū)學(xué)生有1000人.從中選取100人作樣本調(diào)研飲食習(xí)慣,為保證調(diào)研結(jié)果相對(duì)準(zhǔn)確,下列判斷正確的有( )

①用分層抽樣的方法分別抽取東部地區(qū)學(xué)生48人、中部地區(qū)學(xué)生32人、西部地區(qū)學(xué)生20人;

②用簡單隨機(jī)抽樣的方法從新生中選出100人;

③西部地區(qū)學(xué)生小劉被選中的概率為;

④中部地區(qū)學(xué)生小張被選中的概率為

A. ①④ B. ①③ C. ②④ D. ②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

同步練習(xí)冊答案