在直三棱柱中,,直線與平面成30°角.
(I)求證:平面平面;
(II)求直線與平面所成角的正弦值;
(III)求二面角的平面角的余弦值.
(1)見解析;(2)(3).
【解析】本試題主要考查了空間想象能力的運(yùn)用,解決空間中的線面角二面角以及面面垂直的判定定理的運(yùn)用。
(1)證明:由直三棱柱性質(zhì),B1B⊥平面ABC,
∴B1B⊥AC,
又BA⊥AC,B1B∩BA=B,
∴AC⊥平面 ABB1A1,
又AC平面B1AC,
∴平面B1AC⊥平面ABB1A1.
(2)解:過A1做A1M⊥B1A1,垂足為M,連結(jié)CM,
∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A,
∴A1M⊥平面B1AC.
∴∠A1CM為直線A1C與平面B1AC所成的角,
∵直線B1C與平面ABC成30°角,
∴∠B1CB=30°.
設(shè)AB=BB1=a,可得B1C=2a,BC=,
∴直線A1C與平面B1AC所成角的正弦值為
(3)解:過A做AN⊥BC,垂足為N,過N做NO⊥B1C,垂足為O,連結(jié)AO,[來源:Zxxk.Com]
由AN⊥BC,可得AN⊥平面BCC1B1,由三垂線定理,可知AO⊥B1C,
∴∠AON為二面角B—B1C—A的平面角,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014屆遼寧沈陽高二寒假驗收數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分10分)
如圖,在直三棱柱中,,.棱上有兩個動點(diǎn)E,F(xiàn),且EF =" a" (a為常數(shù)).
(Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
(Ⅱ)判斷三棱錐B—CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第四次月考理科數(shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,在直三棱柱中,、分別為、的中點(diǎn)。
(I)證明:ED為異面直線與的公垂線;
(II)設(shè)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省保定市高二年級第二學(xué)期期中聯(lián)考數(shù)學(xué)試卷(文科) 題型:解答題
(本題滿分12分)在直三棱柱中,,直線與平面成角;
(1)求證:平面平面;
(2)求二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010年湖北普通高等學(xué)校招生全國統(tǒng)一考試數(shù)學(xué)(文史類)模擬試題 題型:解答題
(本小題滿分12分)如圖,在直三棱柱中,,,,,E在上,且,分別為的中點(diǎn).
(1)求證:平面;
(2)求異面直線與所成的角;
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com