【題目】某項(xiàng)科研活動(dòng)共進(jìn)行了5次試驗(yàn),其數(shù)據(jù)如表所示:

特征量

第1次

第2次

第3次

第4次

第5次

x

555

559

551

563

552

y

601

605

597

599

598

(Ⅰ)從5次特征量y的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個(gè)數(shù)據(jù),求至少有一個(gè)大于600的概率;
(Ⅱ)求特征量y關(guān)于x的線性回歸方程 ;并預(yù)測(cè)當(dāng)特征量x為570時(shí)特征量y的值.
(附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為 = ,

【答案】解:(Ⅰ)從5次特征量y的試驗(yàn)數(shù)據(jù)中隨機(jī)地抽取兩個(gè)數(shù)據(jù),共有 =10種方法,都小于600,有 =3種方法,∴至少有一個(gè)大于600的概率= =0.7;
(Ⅱ) =554, =600, = = =0.25, = =461.5,∴ =0.25x+461.5,
x=570, =604,即當(dāng)特征量x為570時(shí)特征量y的值為604.
【解析】(Ⅰ)利用對(duì)立事件的概率公式,可得結(jié)論;(Ⅱ)求出回歸系數(shù),即可求特征量y關(guān)于x的線性回歸方程 ;并預(yù)測(cè)當(dāng)特征量x為570時(shí)特征量y的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩(shī)詞知識(shí)競(jìng)賽為主的《中國(guó)詩(shī)詞大會(huì)》火爆熒屏.將中學(xué)組和大學(xué)組的參賽選手按成績(jī)分為優(yōu)秀、良好、一般三個(gè)等級(jí),隨機(jī)從中抽取了100名選手進(jìn)行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)人數(shù)的條形圖.

(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的列聯(lián)表,據(jù)此資料你是否有95%的把握認(rèn)為選手成績(jī)“優(yōu)秀”與文化程度有關(guān)?

優(yōu)秀

合格

合計(jì)

大學(xué)組

中學(xué)組

合計(jì)

注:,其中.

0.10

0.05

0.005

2.706

3.841

7.879

(2)若參賽選手共6萬(wàn)人,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù).

(3)在優(yōu)秀等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6.在良好等級(jí)的選手中取6名,依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為,求使得方程組有唯一一組實(shí)數(shù)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高一年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計(jì)

M

1

(1)求出表中M,p及圖中a的值;

(2)若該校高一學(xué)生有360人,試估計(jì)該校高一學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);

(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,請(qǐng)列舉出所有基本事件,并求至多1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)kR),且滿足f(﹣1)=f(1).

(1)求k的值;

(2)若函數(shù)y=fx)的圖象與直線沒(méi)有交點(diǎn),求a的取值范圍;

(3)若函數(shù)x[0,log23],是否存在實(shí)數(shù)m使得hx)最小值為0,若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)的圖象經(jīng)過(guò)點(diǎn)( , ).若函數(shù)g(x)的定義域?yàn)镽,當(dāng)x∈[﹣2,2]時(shí),有g(shù)(x)=f(x),且函數(shù)g(x+2)為偶函數(shù),則下列結(jié)論正確的是(
A.g(π)<g(3)<g(
B.g(π)<g( )<g(3)??
C.g( )<g(3)<g(π)
D.g( )<g(π)<g(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣x+ ,其中a>0
(Ⅰ)若f(x)在(2,+∞)上存在極值點(diǎn),求a的取值范圍;
(Ⅱ)設(shè)x1∈(0,1),x2∈(1,+∞),若f(x2)﹣f(x1)存在最大值,記為M(a).則a≤e+ 時(shí),M(a)是否存在最大值?若存在,求出最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐中,底面,,,的中點(diǎn).

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對(duì)數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個(gè)零點(diǎn),則a的取值范圍是(
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù) 的圖象上每個(gè)點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的4倍,再向左平移 ,得到函數(shù)g(x)的圖象,則函數(shù)g(x)的一個(gè)單調(diào)遞減區(qū)間為(
A.
B. ??
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案