【題目】如圖所示,四棱錐中,底面,,,,,的中點.

(1)求證:平面

(2)求直線與平面所成角的正弦值.

【答案】(1)見解析; (2).

【解析】

(1)在中,由余弦定理可解得:

所以,所以是直角三角形,

為等邊三角形,所以,所以,即可證明平面

(2):由(1)可知,以點為原點,以,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,利用空間向量可求直線與平面所成角的正弦值.

(1)證明:因為,,,

所以,,

中,,,,

由余弦定理可得:

解得:

所以,所以是直角三角形,

的中點,所以

,所以為等邊三角形,

所以,所以

平面,平面,

所以平面.

(2)解:由(1)可知,以點為原點,以,,所在直線分別為軸,軸,軸建立空間直角坐標(biāo)系,則,,.

所以,.

設(shè)為平面的法向量,則,即

設(shè),則,,即平面的一個法向量為,

所以

所以直線與平面所成角的正弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 (a>b>0)過點P(2,1),且離心率為
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)O為坐標(biāo)原點,在橢圓短軸上有兩點M,N滿足 ,直線PM、PN分別交橢圓于A,B.
(i)求證:直線AB過定點,并求出定點的坐標(biāo);
(ii)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知ABC的內(nèi)角A,B,C的對邊分別為a,bc,2acosC=bcosC+ccosB

(1)求角C的大小;

(2)若c=,a2+b2=10,求ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某項科研活動共進行了5次試驗,其數(shù)據(jù)如表所示:

特征量

第1次

第2次

第3次

第4次

第5次

x

555

559

551

563

552

y

601

605

597

599

598

(Ⅰ)從5次特征量y的試驗數(shù)據(jù)中隨機地抽取兩個數(shù)據(jù),求至少有一個大于600的概率;
(Ⅱ)求特征量y關(guān)于x的線性回歸方程 ;并預(yù)測當(dāng)特征量x為570時特征量y的值.
(附:回歸直線的斜率和截距的最小二乘法估計公式分別為 =

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),直線l的參數(shù)方程為 (t為參數(shù)),在以坐標(biāo)原點O為極點,x軸為正半軸為極軸的極坐標(biāo)系中,過極點O的射線與曲線C相交于不同于極點的點A,且點A的極坐標(biāo)為(2 ,θ),其中θ∈( ,π)
(Ⅰ)求θ的值;
(Ⅱ)若射線OA與直線l相交于點B,求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (a>0),且f(1)=2;
(1)求a和f(x)的單調(diào)區(qū)間;
(2)f(x+1)﹣f(x)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,不等式組 (r為常數(shù))表示的平面區(qū)域的面積為π,若x,y滿足上述約束條件,則z= 的最小值為(
A.﹣1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C的離心率為,且過點,過橢圓的左頂點A作直線,M為直線上的動點,B為橢圓右頂點,直線BM交橢圓CP

(1)求橢圓C的方程;

(2)求證:;

(3)試問是否為定值若是定值,請求出該定值;若不是定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓 =1(a>b>0)的左、右焦點分別為F1 , F2 , 右頂點為A,上頂點為B,離心率為e.橢圓上一點C滿足:C在x軸上方,且CF1⊥x軸.

(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長交橢圓于另一點D若 ≤e≤ ,求 的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案