【題目】在平面直角坐標(biāo)系中,不等式組 (r為常數(shù))表示的平面區(qū)域的面積為π,若x,y滿足上述約束條件,則z= 的最小值為(
A.﹣1
B.﹣
C.
D.﹣

【答案】D
【解析】解:∵不等式組 (r為常數(shù))表示的平面區(qū)域的面積為π, ∴圓x2+y2=r2的面積為4π,則r=2.
由約束條件作出可行域如圖,

z= =1+ ,
的幾何意義為可行域內(nèi)的動點與定點P(﹣3,2)連線的斜率.
設(shè)過P的圓的切線的斜率為k,則切線方程為y﹣2=k(x+3),即kx﹣y+3k+2=0.
,解得k=0或k=﹣
∴z= 的最小值為1﹣
故選:D.
由約束條件作出可行域,由z= =1+ ,而 的幾何意義為可行域內(nèi)的動點與定點P(﹣3,2)連線的斜率.結(jié)合直線與圓的位置關(guān)系求得答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式組表示的平面區(qū)域為,若函數(shù)的圖象上存在區(qū)域內(nèi)的點,則實數(shù)的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)的反函數(shù)的圖象經(jīng)過點( ).若函數(shù)g(x)的定義域為R,當(dāng)x∈[﹣2,2]時,有g(shù)(x)=f(x),且函數(shù)g(x+2)為偶函數(shù),則下列結(jié)論正確的是(
A.g(π)<g(3)<g(
B.g(π)<g( )<g(3)??
C.g( )<g(3)<g(π)
D.g( )<g(π)<g(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐中,底面,,,,的中點.

(1)求證:平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過雙曲線 的右支上的一點P作一直線l與兩漸近線交于A、B兩點,其中P是AB的中點;
(1)求雙曲線的漸近線方程;
(2)當(dāng)P坐標(biāo)為(x0 , 2)時,求直線l的方程;
(3)求證:|OA||OB|是一個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=e2x﹣ax2+bx﹣1,其中a,b∈R,e為自然對數(shù)的底數(shù),若f(1)=0,f′(x)是f(x)的導(dǎo)函數(shù),函數(shù)f′(x)在區(qū)間(0,1)內(nèi)有兩個零點,則a的取值范圍是(
A.(e2﹣3,e2+1)
B.(e2﹣3,+∞)
C.(﹣∞,2e2+2)
D.(2e2﹣6,2e2+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 若Sm1=﹣4,Sm=0,Sm+2=14(m≥2,且m∈N*).
(1)求m的值;
(2)若數(shù)列{bn}滿足 =logabn(n∈N*),求數(shù)列{(an+6)bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的三個內(nèi)角A、B、C所對的邊分別為a、b、c,已知a≠b,c= ,且bsinB﹣asinA= acosA﹣ bcosB.
(Ⅰ)求C;
(Ⅱ)若△ABC的面積為 ,求a與b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓Cab>0)的兩個焦點分別為F1,F2,離心率為,過F1的直線l與橢C交于MN兩點,且MNF2的周長為8.

(1)求橢圓C的方程;

(2)若直線ykxb與橢圓C分別交于A,B兩點,且OAOB,試問點O到直線AB的距離是否為定值,證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案