7.已知曲線C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,直線:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(為參數(shù)).寫出曲線C的參數(shù)方程,直線的普通方程.

分析 根據(jù)題意,對(duì)曲線C的方程變形可得($\frac{x}{2}$)2+($\frac{y}{3}$)2=1,令$\frac{x}{2}$=cosθ,$\frac{y}{3}$=sinθ,可得x=2cosθ,y=3sinθ,即可得曲線C的參數(shù)方程,由直線的參數(shù)方程,消去參數(shù)t即可得直線的普通方程.

解答 解:根據(jù)題意,曲線C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{9}$=1,即($\frac{x}{2}$)2+($\frac{y}{3}$)2=1
令$\frac{x}{2}$=cosθ,$\frac{y}{3}$=sinθ,
則x=2cosθ,y=3sinθ,
則曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$,
直線的參數(shù)方程為$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$,
變形可得2x+y=6,即2x+y-6=0.

點(diǎn)評(píng) 本題考查參數(shù)方程與普通方程的互化,關(guān)鍵是掌握直線、橢圓的參數(shù)方程的形式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知流程圖如圖,則輸出的n=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.袋中裝有紅球3個(gè)、白球2個(gè)、黑球1個(gè),從中任取2個(gè),則互斥而不對(duì)立的兩個(gè)事件是( 。
A.至少有一個(gè)白球;都是白球B.至少有一個(gè)白球;至少有一個(gè)紅球
C.至少有一個(gè)白球;紅、黑球各一個(gè)D.恰有一個(gè)白球;一個(gè)白球一個(gè)黑球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.從0,1,2,3,4這五個(gè)數(shù)中任選三個(gè)不同的數(shù)組成一個(gè)三位數(shù),記Y為所組成的三位數(shù)各位數(shù)字之和.
(1)求Y是奇數(shù)的概率;
(2)求Y的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)定義在R上的奇函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),且f(x2-3x)+f(2)>0,則實(shí)數(shù)x的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知曲線C的極坐標(biāo)方程是ρ2-8ρcos θ+15=0,直線l的極坐標(biāo)方程是θ=$\frac{π}{4}$(ρ∈R).若P,Q分別為曲線C與直線l上的動(dòng)點(diǎn),求PQ的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某校為了解高一期末數(shù)學(xué)考試的情況,從高一的所有學(xué)生數(shù)學(xué)試卷中隨機(jī)抽取n份試卷進(jìn)行成績(jī)分析,得到數(shù)學(xué)成績(jī)頻率分布直方圖(如圖所示),其中成績(jī)?cè)赱50,60)的學(xué)生人數(shù)為6.
(Ⅰ)求直方圖中x的值;
(Ⅱ)求n的值;
(Ⅲ)試根據(jù)樣本估計(jì)“該校高一學(xué)生期末數(shù)學(xué)考試成績(jī)≥70”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.袋子里有兩個(gè)不同的紅球和兩個(gè)不同的白球,從中任意取兩個(gè)球,則這兩個(gè)球顏色不相同的概率為$\frac{2}{3}$ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-x+alnx(a>0)$
(1)若a=1,求f(x)的圖象在(1,f(1))處的切線方程;
(2)若f(x)在定義域上是單調(diào)函數(shù),求a的取值范圍;
(3)若f(x)存在兩個(gè)極值點(diǎn)x1,x2,求證:$f({x_1})+f({x_2})>-\frac{3+2ln2}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案