18.冪函數(shù)y=x${\;}^{{m}^{2}-2m-3}$(m∈Z)是偶函數(shù),并且在第一象限單調(diào)遞減,則m=1.

分析 冪函數(shù)y=x${\;}^{{m}^{2}-2m-3}$(m∈Z)是偶函數(shù),并且在第一象限單調(diào)遞減,可得m2-2m-3<0,且m2-2m-3是偶數(shù),解出即可得出答案.

解答 解:∵冪函數(shù)y=x${\;}^{{m}^{2}-2m-3}$(m∈Z)是偶函數(shù),并且在第一象限單調(diào)遞減,
∴m2-2m-3<0,且m2-2m-3是偶數(shù),
解得:m=1.
故答案為:1.

點(diǎn)評(píng) 本題考查了冪函數(shù)的單調(diào)性奇偶性、不等式的解法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x>0}\\{x-1,x≤0}\end{array}\right.$,若f(a)+f(2)=0,則實(shí)數(shù)a的值等于( 。
A.3B.1C.-1D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=x2,則f(a-1)的值為(  )
A.a2-1B.a2-2a+2C.a2-2a+1D.a2-a+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知圓C的方程為x2+y2+2x-6y-6=0,O為坐標(biāo)原點(diǎn).
(Ⅰ)求過(guò)點(diǎn)M(-5,11)的圓C的切線方程;
(Ⅱ)若圓C上有兩點(diǎn)P,Q關(guān)于直線x+my+4=0對(duì)稱(chēng),并且滿足$\overrightarrow{OP}•\overrightarrow{OQ}=-7$,求m的值和直線PQ的方程;
(Ⅲ)過(guò)點(diǎn)N(2,3)作直線與圓C交于A,B兩點(diǎn),求△ABC的最大面積以及此時(shí)直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知f(x)=ax-lnx,x∈(0,e],其中e是自然常數(shù),a∈R.
(1)當(dāng)a=1時(shí),求f(x)的單調(diào)區(qū)間和極值;
(2)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說(shuō)明理由.
(3)證明:(1-$\frac{1}{2}$)•($\frac{1}{2}-$$\frac{1}{3}$)•($\frac{1}{3}$-$\frac{1}{4}$)…($\frac{1}{n}$-$\frac{1}{n+1}$)<e3(3-n)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若數(shù)列{an}滿足a1=1,且an+1=4an+2n,則通項(xiàng)an=22n-1-2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=-t\\ y=-1+t\end{array}$(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$).
(Ⅰ)寫(xiě)出直線l的極坐標(biāo)方程;
(Ⅱ)求直線l與曲線C交點(diǎn)的極坐標(biāo)(ρ≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.(1)函數(shù)f(x)=lnx-$\frac{a(x-1)}{x}$(x>0,a∈R).當(dāng)a>0時(shí),求證:函數(shù)f(x)的圖象存在唯一零點(diǎn)的充要條件是a=1;
(2)求證:不等式$\frac{1}{lnx}$-$\frac{1}{x-1}$<$\frac{2}{3}$對(duì)于x∈(1,2)恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.?dāng)?shù)列{an}滿足:a1=1,且對(duì)任意的m,n∈N+都有am+n=am+an+m•n,則$\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+…+\frac{1}{{{a_{2016}}}}$=( 。
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

同步練習(xí)冊(cè)答案