【題目】如圖,PA⊥平面ABC,AE⊥PB,AB⊥BC,AF⊥PC,PA=AB=BC.
(1)求證:平面AEF⊥平面PBC.
(2)求二面角P-BC-A的大小.
【答案】(1)詳見解析(2)
【解析】試題分析:(1)由線面垂直的定義,根據(jù)PA⊥平面ABC得PA⊥BC,結合AB⊥BC得BC⊥平面PAB,從而得出AE⊥BC,結合AE⊥PB證出AE⊥平面PBC,最后根據(jù)面面垂直判定定理,即可證出平面AEF⊥平面PBC;
(2)由(1)的結論得BC⊥AB且BC⊥PB,所以∠PBA是二面角P﹣BC﹣A的平面角,Rt△PAB中算出∠PBA=45°,即可得到二面角P﹣BC﹣A的大小。
試題解析:
(1)因為PA⊥平面ABC,又BC平面ABC,所以PA⊥BC,
又AB⊥BC,AB與PA相交于點A,
所以BC⊥平面PAB,又AE平面PAB,所以BC⊥AE,又AE⊥PB,而PB與BC相交于點B,所以AE⊥平面PBC,又AE平面AEF,故平面AEF⊥平面PBC.
(2)由(1)知,BC⊥平面PAB,PB平面PAB,
所以PB⊥BC,又AB⊥BC,
所以∠PBA就是二面角P-BC-A的平面角,
在Rt△PAB中,因為PA=AB,所以∠PBA=45°,
即二面角P-BC-A的大小為45°.
科目:高中數(shù)學 來源: 題型:
【題目】已知以點A(-1,2)為圓心的圓與直線l1:x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,Q是MN的中點.
(1)求圓A的方程;
(2)當|MN|=2時,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A (1,2),B(a,1),C(2,3),D(﹣1,b)(a,b∈R)是復平面上的四個點,且向量 , 對應的復數(shù)分別為z1 , z2 . (Ⅰ)若z1+z2=1+i,求z1 , z2
(Ⅱ)若|z1+z2|=2,z1﹣z2為實數(shù),求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,正方體ABCD-A1B1C1D1中,點E,F(xiàn)分別為D1C1,C1B1的中點,
AC∩BD=P,A1C1∩EF=Q.求證:
(1)D,B,E,F(xiàn)四點共面.
(2)若A1C交平面BDEF于點R,則P,Q,R三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=x(lnx﹣ax)(a∈R)在區(qū)間(0,2)上有兩個極值點,則a的取值范圍是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點,E為線段PC上一點.
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當PA∥平面BDE時,求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(2x+ )﹣cos2x.
(1)求f(x)的最小正周期及x∈[ , ]時f(x)的值域;
(2)在△ABC中,角A、B、C所對的邊為a,b,c,且角C為銳角,S△ABC= ,c=2,f(C+ )= ﹣ .求a,b的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”,劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”,如圓是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin7.50=0.1305)
A.12
B.24
C.48
D.96
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com