【題目】某校為了解家長對學(xué)校食堂的滿意情況,分別從高一、高二年級隨機(jī)抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:

滿意度評分分組

合計(jì)

高一

1

3

6

6

4

20

高二

2

6

5

5

2

20

根據(jù)評分,將家長的滿意度從低到高分為三個(gè)等級:

滿意度評分

評分70

70評分90

評分90

滿意度等級

不滿意

滿意

非常滿意

假設(shè)兩個(gè)年級家長的評價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機(jī)抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.

【答案】0.42

【解析】

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.

由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,

高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:

1.高一家長滿意,高二家長不滿意,其概率為

2.高一家長非常滿意,高二家長不滿意,其概率為;

3.高一家長非常滿意,高二家長滿意,其概率為.

由加法公式,知事件發(fā)生的概率為.

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點(diǎn),過坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于兩點(diǎn).

1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.

2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體為邊長為2的正方形,為直角梯形,,,,

(1)求證:

(2)求二面角的大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列滿足,,數(shù)列的前項(xiàng)和為滿足.

(Ⅰ)求的通項(xiàng)公式;

(Ⅱ)若,恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)已知,,設(shè)函數(shù)的最大值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,過點(diǎn)垂直于軸,垂足為,連接并延長交于另一點(diǎn),交軸于點(diǎn).

(ⅰ)求面積最大值;

(ⅱ)證明:直線斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于M,N兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若正整數(shù)數(shù)列滿足:對任意,,都有恒成立,則稱數(shù)列為“友好數(shù)列”.

1)已知數(shù)列,的通項(xiàng)公式分別為,,求證:數(shù)列為“友好數(shù)列”;

2)已知數(shù)列為“友好數(shù)列”,且,求證:“數(shù)列是等差數(shù)列” 是“數(shù)列是等比數(shù)列”的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)A是由個(gè)實(shí)數(shù)組成的nn列的數(shù)表,其中aij (i,j=12,3,,n)表示位于第i行第j列的實(shí)數(shù),且aij{1,-1}.S(n,n)為所有這樣的數(shù)表構(gòu)成的集合.對于,記ri (A)A的第i行各數(shù)之積,cj (A)A的第j列各數(shù)之積.令

a11

a12

a1n

a21

a22

a2n

an1

an2

ann

(Ⅰ)請寫出一個(gè)AS(44),使得l(A)=0

)是否存在AS(9,9),使得l(A)=0?說明理由;

)給定正整數(shù)n,對于所有的AS(nn),求l(A)的取值集合.

查看答案和解析>>

同步練習(xí)冊答案