【題目】已知橢圓的短軸長(zhǎng)為,左右焦點(diǎn)分別為,,點(diǎn)是橢圓上位于第一象限的任一點(diǎn),且當(dāng)時(shí),.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若橢圓上點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對(duì)稱,過(guò)點(diǎn)作垂直于軸,垂足為,連接并延長(zhǎng)交于另一點(diǎn),交軸于點(diǎn).
(。┣面積最大值;
(ⅱ)證明:直線與斜率之積為定值.
【答案】(1);(2)(ⅰ);(ⅱ)證明見(jiàn)解析.
【解析】
(1)由,解方程組即可得到答案;
(2)(ⅰ)設(shè),,則,,易得,注意到,利用基本不等式得到的最大值即可得到答案;(ⅱ)設(shè)直線斜率為,直線方程為,聯(lián)立橢圓方程得到的坐標(biāo),再利用兩點(diǎn)的斜率公式計(jì)算即可.
(1)設(shè),由,得.
將代入,得,即,
由,解得,
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)設(shè),,則,
(。┮字為的中位線,所以,
所以,
又滿足,所以
,得,
故,當(dāng)且僅當(dāng),即,時(shí)取等號(hào),
所以面積最大值為.
(ⅱ)記直線斜率為,則直線斜率為,
所以直線方程為.
由,得,
由韋達(dá)定理得,所以,
代入直線方程,得,
于是,直線斜率,
所以直線與斜率之積為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,四棱錐中,平面,,,.
(1)在棱上是否存在一點(diǎn),使得平面?請(qǐng)證明你的結(jié)論;
(2)求平面和平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在以ABCDEF為頂點(diǎn)的五面體中,底面ABCD為菱形,∠ABC=120°,AB=AE=ED=2EF,EFAB,點(diǎn)G為CD中點(diǎn),平面EAD⊥平面ABCD.
(1)證明:BD⊥EG;
(2)若三棱錐,求菱形ABCD的邊長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,的面積為1,且橢圓的離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)點(diǎn)在橢圓上且位于第二象限,過(guò)點(diǎn)作直線,過(guò)點(diǎn)作直線,若直線的交點(diǎn)恰好也在橢圓上,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解家長(zhǎng)對(duì)學(xué)校食堂的滿意情況,分別從高一、高二年級(jí)隨機(jī)抽取了20位家長(zhǎng)的滿意度評(píng)分,其頻數(shù)分布表如下:
滿意度評(píng)分分組 | 合計(jì) | |||||
高一 | 1 | 3 | 6 | 6 | 4 | 20 |
高二 | 2 | 6 | 5 | 5 | 2 | 20 |
根據(jù)評(píng)分,將家長(zhǎng)的滿意度從低到高分為三個(gè)等級(jí):
滿意度評(píng)分 | 評(píng)分70分 | 70評(píng)分90 | 評(píng)分90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
假設(shè)兩個(gè)年級(jí)家長(zhǎng)的評(píng)價(jià)結(jié)果相互獨(dú)立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級(jí)各隨機(jī)抽取1名家長(zhǎng),記事件:“高一家長(zhǎng)的滿意度等級(jí)高于高二家長(zhǎng)的滿意度等級(jí)”,則事件發(fā)生的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為AB,BC的中點(diǎn),點(diǎn)F在側(cè)棱B1B上,且, .
求證:(1)直線DE平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分13分)
某食品廠進(jìn)行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工費(fèi)為元(為常數(shù),且,設(shè)該食品廠每公斤蘑菇的出廠價(jià)為元(),根據(jù)市場(chǎng)調(diào)查,銷售量與成反比,當(dāng)每公斤蘑菇的出廠價(jià)為30元時(shí),日銷售量為100公斤.
(Ⅰ)求該工廠的每日利潤(rùn)元與每公斤蘑菇的出廠價(jià)元的函數(shù)關(guān)系式;
(Ⅱ)若,當(dāng)每公斤蘑菇的出廠價(jià)為多少元時(shí),該工廠的利潤(rùn)最大,并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年10月28日,重慶公交車墜江事件震驚全國(guó),也引發(fā)了廣大群眾的思考——如何做一個(gè)文明的乘客.全國(guó)各地大部分社區(qū)組織居民學(xué)習(xí)了文明乘車規(guī)范.社區(qū)委員會(huì)針對(duì)居民的學(xué)習(xí)結(jié)果進(jìn)行了相關(guān)的問(wèn)卷調(diào)查,并將得到的分?jǐn)?shù)整理成如圖所示的統(tǒng)計(jì)圖.
(Ⅰ)求得分在上的頻率;
(Ⅱ)求社區(qū)居民問(wèn)卷調(diào)查的平均得分的估計(jì)值;(同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(Ⅲ)以頻率估計(jì)概率,若在全部參與學(xué)習(xí)的居民中隨機(jī)抽取5人參加問(wèn)卷調(diào)查,記得分在間的人數(shù)為,求的分布列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+bln(x+1),其中b≠0.
(1)若b=﹣12,求f(x)在[1,3]的最小值;
(2)如果f(x)在定義域內(nèi)既有極大值又有極小值,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com