分析 (Ⅰ)由已知可得|EF2|=|F1F2|,且F1A∥F2B,得B是A和E的中點,不妨設(shè)A(0,b),由E(3c,0),求得B的坐標,代入橢圓方程即可求得橢圓的離心率;
(Ⅱ)由(Ⅰ)可得a2=3c2,b2=a2-c2=2c2,設(shè)橢圓方程為2x2+3y2=6c2.分A(0,$\sqrt{2}c$)與A(0,-$\sqrt{2}c$)兩類可得$\frac{n}{m}$的值.
解答 解:(Ⅰ)∵|EF2|=3c-c=2c=|F1F2|,且F1A∥F2B,
∴B是A和E的中點,
不妨設(shè)A(0,b),由E(3c,0),
∴B($\frac{3c}{2},\frac{2}$),代入$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$得:$\frac{\frac{9}{4}{c}^{2}}{{a}^{2}}+\frac{\frac{1}{4}^{2}}{^{2}}=1$,
∴$\frac{c}{a}=\frac{\sqrt{3}}{3}$,即橢圓的離心率e=$\frac{\sqrt{3}}{3}$;
(Ⅱ)由(Ⅰ)知,${e}^{2}=(\frac{c}{a})^{2}=\frac{1}{3}$,得a2=3c2,b2=a2-c2=2c2,
∴橢圓的方程可設(shè)為2x2+3y2=6c2.
若A(0,$\sqrt{2}c$),則C(0,-$\sqrt{2}c$),
線段AF1 的垂直平分線l的方程為y-$\frac{\sqrt{2}}{2}c=-\frac{\sqrt{2}}{2}(x+\frac{c}{2})$,
直線l與x軸的交點($\frac{c}{2},0$)是△AF1C外接圓的圓心.
因此,外接圓的方程為$(x-\frac{c}{2})^{2}+{y}^{2}=(\frac{c}{2}+c)^{2}$.
直線F2B的方程為y=$\sqrt{2}$(x-c),于是點H(m,n)的坐標滿足方程組:
$\left\{\begin{array}{l}{n=\sqrt{2}(m-c)}\\{(m-\frac{c}{2})^{2}+{n}^{2}=\frac{9{c}^{2}}{4}}\end{array}\right.$,由m≠0,解得$\left\{\begin{array}{l}{n=\frac{2\sqrt{2}}{3}c}\\{m=\frac{5}{3}c}\end{array}\right.$.
故$\frac{n}{m}=\frac{2\sqrt{2}}{5}$;
若A(0,-$\sqrt{2}c$),則C(0,$\sqrt{2}c$),
同理可得$\frac{n}{m}=-\frac{2\sqrt{2}}{5}$.
∴$\frac{n}{m}=±\frac{2\sqrt{2}}{5}$.
點評 本題考查橢圓的簡單性質(zhì),考查了直線與橢圓位置關(guān)系的應(yīng)用,考查邏輯思維能力與運算求解能力,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$i | B. | 1 | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-ln2 | B. | 2ln2-$\frac{1}{2}$ | C. | 2+ln2 | D. | 2ln2+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{2}{9}$ | B. | $\frac{2}{9}$ | C. | -$\frac{8}{9}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com