【題目】設數(shù)列{an}的前n項和為Sn,n∈N*.已知a1=1,a2=,a3=,且當n≥2時,4Sn+2+5Sn=8Sn+1+Sn-1.
(1)求a4的值;
(2)證明:為等比數(shù)列;
(3)求數(shù)列{an}的通項公式.
【答案】見解析
【解析】
(1)解:當n=2時,4S4+5S2=8S3+S1,
即4(a1+a2+a3+a4)+5(a1+a2)=8(a1+a2+a3)+a1,
整理得a4=,
又a2=,a3=,
所以a4=.
(2)證明:當n≥2時,有4Sn+2+5Sn=8Sn+1+Sn-1,
即4Sn+2+4Sn+Sn=4Sn+1+4Sn+1+Sn-1,
∴4(Sn+2-Sn+1)=4(Sn+1-Sn)-(Sn-Sn-1),
即an+2=an+1-an(n≥2).
經(jīng)檢驗,當n=1時,上式成立.
∵===為常數(shù),且a2-a1=1,
∴數(shù)列是以1為首項,為公比的等比數(shù)列.
(3)解:由(2)知,an+1-an= (n∈N*),
等式兩邊同乘2n,
得2nan+1-2n-1an=2(n∈N*).
又20a1=1,
∴數(shù)列{2n-1an}是以1為首項,2為公差的等差數(shù)列.
∴2n-1an=2n-1,
即an= (n∈N*).
則數(shù)列{an}的通項公式為an= (n∈N*).
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且函數(shù)在和處都取得極值.
(1)求實數(shù)與的值;
(2)對任意,方程存在三個實數(shù)根,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,圓,經(jīng)過原點的兩直線滿足,且交圓于不同兩點交, 圓于不同兩點,記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】張三同學從7歲起到13歲每年生日時對自己的身高測量后記錄如下表:
年齡(歲) | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
身高(cm) | 121 | 128 | 135 | 141 | 148 | 154 | 160 |
(Ⅰ)求身高關于年齡的線性回歸方程;
(Ⅱ)利用(Ⅰ)中的線性回歸方程,分析張三同學7歲至13歲身高的變化情況,如17歲之前都符合這一變化,請預測張三同學15歲時的身高.
附:回歸直線的斜率和截距的最小二乘法估計公式分別為:
,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點.
(1) 證明:AE⊥平面PCD;
(2) 求PB和平面PAD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐PABCD中,側面PAB⊥底面ABCD,底面ABCD為矩形,PA=PB,O為AB的中點,OD⊥PC.
(1)求證:OC⊥PD;
(2)若PD與平面PAB所成的角為30°,求二面角DPCB的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列的前n項和為,且,令.
(Ⅰ)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)若,用數(shù)學歸納法證明是18的倍數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com