【題目】設(shè)是定義在正整數(shù)集上的函數(shù),且滿(mǎn)足:當(dāng)成立時(shí),總可推出

成立,那么下列命題總成立的是( )

A. 成立,則成立;

B. 成立,則成立;

C. 成立,則當(dāng)時(shí),均有成立;

D. 成立,則當(dāng)時(shí),均有成立.

【答案】D

【解析】分析:“當(dāng)成立時(shí),總可推出成立”是一種遞推關(guān)系,前一個(gè)數(shù)成立,后一個(gè)數(shù)一定成立,反之不一定成立.

詳解:對(duì)A,因?yàn)椤霸}成立,否命題不一定成立”,所以若f(1)<1成立,則不一定f(10)<100成立;

對(duì)B,因?yàn)椤霸}成立,則逆否命題一定成立”,所以只能得出:若成立,則f(1)<1成立,不能得出:若f(2)<4成立,則成立;

對(duì)C,當(dāng)k=1或2時(shí),不一定有成立;

對(duì)D,∵,∴對(duì)于任意的,均有成立.

故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的方程為點(diǎn)的坐標(biāo)為.

(1)求過(guò)點(diǎn)且與圓相切的直線(xiàn)方程;

(2)過(guò)點(diǎn)任作一條直線(xiàn)與圓交于不同兩點(diǎn),且圓軸正半軸于點(diǎn),求證:直線(xiàn)的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于A(yíng)D和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn). (Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線(xiàn)CD上的動(dòng)點(diǎn),MN與面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= (b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實(shí)數(shù) b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣∞,3)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記函數(shù)的定義域?yàn)?/span>, )的定義域?yàn)?/span>.

(1)求;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把這樣的數(shù)稱(chēng)為三角形數(shù),而把

這樣的數(shù)稱(chēng)為正方形數(shù).如圖,可以發(fā)現(xiàn)任何一個(gè)大于正方形數(shù)都可以看作兩個(gè)相鄰

三角形數(shù)之和,下列四個(gè)等式:;②;③;

中符合這一規(guī)律的等式是_____________.(填寫(xiě)所有正確結(jié)論的編號(hào))

……

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知yf(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2-2x.

(1)寫(xiě)出函數(shù)yf(x)的解析式

(2)若方程f(x)=a恰有3個(gè)不同的解,求a的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高一數(shù)學(xué)研究小組測(cè)量學(xué)校的一座教學(xué)樓AB的高度已知測(cè)角儀器距離地面的高度為h米,現(xiàn)有兩種測(cè)量方法:

方法如圖用測(cè)角儀器,對(duì)準(zhǔn)教學(xué)樓的頂部A,計(jì)算并記錄仰角;后退a米,重復(fù)中的操作,計(jì)算并記錄仰角

方法如圖用測(cè)角儀器,對(duì)準(zhǔn)教學(xué)樓的頂部A底部B,測(cè)出教學(xué)樓的視角,測(cè)試點(diǎn)與教學(xué)樓的水平距離b米.

請(qǐng)你回答下列問(wèn)題:

用數(shù)據(jù),a,h表示出教學(xué)樓AB的高度;

按照方法II,用數(shù)據(jù),b,h表示出教學(xué)樓AB的高度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓,滿(mǎn)足下列條件:圓心位于軸正半軸上,與直線(xiàn)相切,且被軸截得的弦長(zhǎng)為,圓的面積小于13.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)若點(diǎn),點(diǎn)是圓上一點(diǎn),點(diǎn)的重心,求點(diǎn)的軌跡方程;

(3)設(shè)過(guò)點(diǎn)的直線(xiàn)與圓交于不同的兩點(diǎn),以為鄰邊作平行四邊形.是否存在這樣的直線(xiàn),使得直線(xiàn)恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案