【題目】設(shè)是定義在正整數(shù)集上的函數(shù),且滿(mǎn)足:當(dāng)成立時(shí),總可推出
成立,那么下列命題總成立的是( )
A. 若成立,則成立;
B. 若成立,則成立;
C. 若成立,則當(dāng)時(shí),均有成立;
D. 若成立,則當(dāng)時(shí),均有成立.
【答案】D
【解析】分析:“當(dāng)成立時(shí),總可推出成立”是一種遞推關(guān)系,前一個(gè)數(shù)成立,后一個(gè)數(shù)一定成立,反之不一定成立.
詳解:對(duì)A,因?yàn)椤霸}成立,否命題不一定成立”,所以若f(1)<1成立,則不一定f(10)<100成立;
對(duì)B,因?yàn)椤霸}成立,則逆否命題一定成立”,所以只能得出:若成立,則f(1)<1成立,不能得出:若f(2)<4成立,則成立;
對(duì)C,當(dāng)k=1或2時(shí),不一定有成立;
對(duì)D,∵,∴對(duì)于任意的,均有成立.
故選D
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知圓的方程為,點(diǎn)的坐標(biāo)為.
(1)求過(guò)點(diǎn)且與圓相切的直線(xiàn)方程;
(2)過(guò)點(diǎn)任作一條直線(xiàn)與圓交于不同兩點(diǎn),,且圓交軸正半軸于點(diǎn),求證:直線(xiàn)與的斜率之和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于A(yíng)D和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn). (Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線(xiàn)CD上的動(dòng)點(diǎn),MN與面SAB所成的角為θ,求sinθ的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= (b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實(shí)數(shù) b的取值范圍是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣∞,3)
D.(﹣∞, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】記函數(shù)的定義域?yàn)?/span>, ()的定義域?yàn)?/span>.
(1)求;
(2)若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把…這樣的數(shù)稱(chēng)為“三角形數(shù)”,而把…
這樣的數(shù)稱(chēng)為“正方形數(shù)”.如圖,可以發(fā)現(xiàn)任何一個(gè)大于的“正方形數(shù)”都可以看作兩個(gè)相鄰
“三角形數(shù)”之和,下列四個(gè)等式:①;②;③;
④ 中符合這一規(guī)律的等式是_____________.(填寫(xiě)所有正確結(jié)論的編號(hào))
……
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y=f(x)是定義域?yàn)镽的奇函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=x2-2x.
(1)寫(xiě)出函數(shù)y=f(x)的解析式
(2)若方程f(x)=a恰有3個(gè)不同的解,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一數(shù)學(xué)研究小組測(cè)量學(xué)校的一座教學(xué)樓AB的高度已知測(cè)角儀器距離地面的高度為h米,現(xiàn)有兩種測(cè)量方法:
方法如圖用測(cè)角儀器,對(duì)準(zhǔn)教學(xué)樓的頂部A,計(jì)算并記錄仰角;后退a米,重復(fù)中的操作,計(jì)算并記錄仰角.
方法如圖用測(cè)角儀器,對(duì)準(zhǔn)教學(xué)樓的頂部A底部B,測(cè)出教學(xué)樓的視角,測(cè)試點(diǎn)與教學(xué)樓的水平距離b米.
請(qǐng)你回答下列問(wèn)題:
用數(shù)據(jù),,a,h表示出教學(xué)樓AB的高度;
按照方法II,用數(shù)據(jù),b,h表示出教學(xué)樓AB的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓心為的圓,滿(mǎn)足下列條件:圓心位于軸正半軸上,與直線(xiàn)相切,且被軸截得的弦長(zhǎng)為,圓的面積小于13.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn),點(diǎn)是圓上一點(diǎn),點(diǎn)是的重心,求點(diǎn)的軌跡方程;
(3)設(shè)過(guò)點(diǎn)的直線(xiàn)與圓交于不同的兩點(diǎn),,以,為鄰邊作平行四邊形.是否存在這樣的直線(xiàn),使得直線(xiàn)與恰好平行?如果存在,求出的方程;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com