4.若拋物線y2=2px上一點(diǎn)P(2,y0)到其準(zhǔn)線的距離為4,則拋物線的標(biāo)準(zhǔn)方程為( 。
A.y2=4xB.y2=6xC.y2=8xD.y2=10x

分析 由已知條件,利用拋物線的性質(zhì)得到$\frac{p}{2}$+2=4,求出p的值,
由此求出拋物線的標(biāo)準(zhǔn)方程.

解答 解:∵拋物線y2=2px上一點(diǎn)P(2,y0)到其準(zhǔn)線的距離為4,
∴$\frac{p}{2}$+2=4,解得p=4,
∴拋物線的標(biāo)準(zhǔn)方程為y2=8x.
故選:C.

點(diǎn)評 本題考查了拋物線的標(biāo)準(zhǔn)方程與簡單性質(zhì)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知圓C:(x-2)2+(y-3)2=4外的有一點(diǎn)P(4,-1),過點(diǎn)P作直線l.
(1)當(dāng)直線l過圓心C時,求直線l的方程;
(2)當(dāng)直線l與圓C相切時,求直線l的方程;
(3)當(dāng)直線l的傾斜角為135°時,求直線l被圓C所截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.對任意的n∈N*,數(shù)列{an}滿足|an-cos2n|≤$\frac{1}{3}$且|an+sin2n|≤$\frac{2}{3}$,則an等于( 。
A.$\frac{2}{3}$-sin2nB.sin2n-$\frac{2}{3}$C.$\frac{1}{3}$-cos2nD.cos2n+$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.對于任意的實(shí)數(shù)λ∈R,直線(2λ+1)x+(λ-1)y+1=0恒過定點(diǎn)$(-\frac{1}{3},\frac{2}{3})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.當(dāng)x>0時,函數(shù)$y=\frac{{{x^2}+4}}{x}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線l過點(diǎn)P(-1,2)且點(diǎn)A(2,3)和點(diǎn)B(-4,6)到直線l的距離相等,則直線l的方程為x+2y-3=0或x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.為了研究一種昆蟲的產(chǎn)卵數(shù)y和溫度x是否有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并做出了散點(diǎn)圖,發(fā)現(xiàn)樣本點(diǎn)并沒有分布在某個帶狀區(qū)域內(nèi),兩個變量并不呈現(xiàn)線性相關(guān)關(guān)系,現(xiàn)分別用模型①$y={C_1}{x^2}+{C_2}$與模型;②$y={e^{{C_3}x+{C_4}}}$作為產(chǎn)卵數(shù)y和溫度x的回歸方程來建立兩個變量之間的關(guān)系.
溫度x/°C20222426283032
產(chǎn)卵數(shù)y/個610212464113322
t=x24004845766767849001024
z=lny1.792.303.043.184.164.735.77
$\overline x$$\overline t$$\overline y$$\overline z$
26692803.57
$\frac{{\sum_{i=1}^7{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$$\frac{{\sum_{i=1}^7{({t_i}-\overline t)({y_i}-\overline y)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$$\frac{{\sum_{i=1}^7{({z_i}-\overline z)({x_i}-\overline x)}}}{{\sum_{i=1}^7{{{({x_i}-\overline x)}^2}}}}$$\frac{{\sum_{i=1}^7{({z_i}-\overline z)({t_i}-\overline t)}}}{{\sum_{i=1}^7{{{({t_i}-\overline t)}^2}}}}$
1157.540.430.320.00012
其中${t_i}={x_i}^2$,$\overline t=\frac{1}{7}\sum_{i=1}^7{t_i}$,zi=lnyi,$\overline z=\frac{1}{7}\sum_{i=1}^7{z_i}$,
附:對于一組數(shù)據(jù)(μ1,ν1),(μ2,ν2),…(μn,νn),其回歸直線v=βμ+α的斜率和截距的最小二乘估計(jì)分別為:$β=\frac{{\sum_{i=1}^n{({μ_i}-\bar μ)({ν_i}-\bar ν)}}}{{\sum_{i=1}^n{{{({μ_i}-\bar μ)}^2}}}}$,$α=\bar ν-β\bar μ$
(1)根據(jù)表中數(shù)據(jù),分別建立兩個模型下y關(guān)于x的回歸方程;并在兩個模型下分別估計(jì)溫度為30°C時的產(chǎn)卵數(shù).(C1,C2,C3,C4與估計(jì)值均精確到小數(shù)點(diǎn)后兩位)(參考數(shù)據(jù):e4.65≈104.58,e4.85≈127.74,e5.05≈156.02)
(2)若模型①、②的相關(guān)指數(shù)計(jì)算分別為${R_1}^2=0.82,{R_2}^2=0.96$.,請根據(jù)相關(guān)指數(shù)判斷哪個模型的擬合效果更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.有下列命題:
①等比數(shù)列{an}中,前n項(xiàng)和為Sn,公比為q,則Sn,S2n-Sn,S3n-S2n仍然是等比數(shù)列,其公比為qn;
②一個正方體的頂點(diǎn)都在球面上,它的棱長為2cm,則球的體積是$4\sqrt{3}π$cm3;
③若數(shù)列{an}是正項(xiàng)數(shù)列,
且$\sqrt{a_1}+\sqrt{a_2}+…+\sqrt{a_n}={n^2}+3n(n∈{N^*})$,
則$\frac{a_1}{2}+\frac{a_2}{3}+…+\frac{a_n}{n+1}=2{n^2}+6n$;
④在△ABC中,∠BAC=120°,AB=2,AC=1,D是邊BC上的一點(diǎn)(包括端點(diǎn)),則${\overrightarrow{AD}^{\;}}{•^{\;}}\overrightarrow{BC}$的取值范圍是[-5,2].
其中正確命題的序號是②③④(填番號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.$\overrightarrow a$=(3$\sqrt{3}$sinx,$\sqrt{3}$cosx),$\overrightarrow b$=(cosx,$\sqrt{3}$cosx),f (x)=$\overrightarrow a$•$\overrightarrow b$.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)x∈[-$\frac{π}{3}$,$\frac{π}{3}$]時,g(x)=f(x)+m的最大值為$\frac{11}{2}$,求g(x)的最小值及相應(yīng)的x值.

查看答案和解析>>

同步練習(xí)冊答案