【題目】已知橢圓: 過點(diǎn),且離心率為.過點(diǎn)的直線與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)為橢圓的右頂點(diǎn),探究: 是否為定值,若是,求出該定值,若不是,請說明理由.(其中, , 分別是直線、的斜率)
【答案】(1)(2)1
【解析】試題分析:
(Ⅰ)由題意得到關(guān)于a,b,c的方程組,求解方程組有, ,故橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)結(jié)合(Ⅰ)的結(jié)論可知.易知當(dāng)直線的斜率不存在時(shí),不合題意.
當(dāng)直線的斜率存在時(shí),聯(lián)立直線方程與橢圓方程可得,則
綜上所述, 為定值.
試題解析:
(Ⅰ)依題意, 解得, ,
故橢圓的標(biāo)準(zhǔn)方程為.
(Ⅱ)依題意, .易知當(dāng)直線的斜率不存在時(shí),不合題意.
當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為,
代入中,得,
設(shè), ,由,得,
, ,
故
綜上所述, 為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)若方程在上有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(2)若在上的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為.
(1)求, 的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且過點(diǎn).過點(diǎn)的直線交橢圓于, 兩點(diǎn), 為橢圓的左頂點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求面積的最大值,并求此時(shí)直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對任意,都有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 過點(diǎn),且離心率為.過點(diǎn)的直線與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)為橢圓的右頂點(diǎn),探究: 是否為定值,若是,求出該定值,若不是,請說明理由.(其中, , 分別是直線、的斜率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018海南高三階段性測試(二模)】如圖,在直三棱柱中, , ,點(diǎn)為的中點(diǎn),點(diǎn)為上一動(dòng)點(diǎn).
(I)是否存在一點(diǎn),使得線段平面?若存在,指出點(diǎn)的位置,若不存在,請說明理由.
(II)若點(diǎn)為的中點(diǎn)且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若滿足條件:存在,使在上的值域?yàn)?/span>,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實(shí)數(shù)的取值范圍是
A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]
C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com