【題目】設(shè)函數(shù)的定義域?yàn)?/span>,若滿足條件:存在,使在上的值域?yàn)?/span>,則稱為“倍縮函數(shù)”.若函數(shù)為“倍縮函數(shù)”,則實(shí)數(shù)的取值范圍是
A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]
C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 過(guò)點(diǎn),且離心率為.過(guò)點(diǎn)的直線與橢圓交于, 兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)為橢圓的右頂點(diǎn),探究: 是否為定值,若是,求出該定值,若不是,請(qǐng)說(shuō)明理由.(其中, , 分別是直線、的斜率)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓,直線.
(1)以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,求圓和直線的交點(diǎn)的極坐標(biāo);
(2)若點(diǎn)為圓和直線交點(diǎn)的中點(diǎn),且直線的參數(shù)方程為 (為參數(shù)),求, 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱中,為正三角形,點(diǎn)在棱上,且,點(diǎn),分別為棱,的中點(diǎn).
(1)證明:平面;
(2)若,求直線與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求證:函數(shù)有唯一零點(diǎn);
(2)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若對(duì)于任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè),曲線在點(diǎn)處的切線與直線垂直.
(1)求的值;
(2)若對(duì)于任意的恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)經(jīng)過(guò)橢圓的右焦點(diǎn)的直線與橢圓交于、兩點(diǎn),、分別為橢圓的左、右頂點(diǎn),記與的面積分別為和,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與橢圓相交于兩點(diǎn),與軸, 軸分別相交于點(diǎn)和點(diǎn),且,點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn), 的延長(zhǎng)線交橢圓于點(diǎn),過(guò)點(diǎn)分別做軸的垂線,垂足分別為.
(1) 若橢圓的左、右焦點(diǎn)與其短軸的一個(gè)端點(diǎn)是正三角形的三個(gè)頂點(diǎn),點(diǎn)在橢圓上,求橢圓的方程;
(2)當(dāng)時(shí),若點(diǎn)平分線段,求橢圓的離心率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com