2.已知集合U={1,2,…,n}(n∈N*,n≥2),對于集合U的兩個非空子集A,B,若A∩B=∅,則稱(A,B)為集合U的一組“互斥子集”.記集合U的所有“互斥子集”的組數(shù)為f(n)(視(A,B)與(B,A)為同一組“互斥子集”).
(1)寫出f(2),f(3),f(4)的值;
(2)求f(n).

分析 (1)直接由“互斥子集”的概念求得f(2),f(3),f(4)的值;
(2)由題意,任意一個元素只能在集合A,B,C=CU(A∪B)之一中,求出這n個元素在集合A,B,C中的個數(shù),再求出A、B分別為空集的種數(shù),則f(n)可求.

解答 解:(1)f(2)=1,f(3)=6,f(4)=25;
(2)任意一個元素只能在集合A,B,C=CU(A∪B)之一中,
則這n個元素在集合A,B,C中,共有3n種;
其中A為空集的種數(shù)為2n,B為空集的種數(shù)為2n,
∴A,B均為非空子集的種數(shù)為3n-2n+1+1,
又(A,B)與(B,A)為一組“互斥子集”,
∴f(n)=$\frac{1}{2}({3}^{n}-{2}^{n+1}+1)$.

點評 本題是新定義題,考查交、并、補集的混合運算,考查邏輯思維能力與推理運算能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.將函數(shù)f(x)=cos2x圖象向左平移φ(0<φ<$\frac{π}{2}$)個單位后得到函數(shù)g(x)的圖象,若函數(shù)g(x)在區(qū)間[-$\frac{π}{6}$,$\frac{π}{6}$]上單調遞減,且函數(shù)g(x)的最大負零點在區(qū)間(-$\frac{π}{6}$,0)上,則φ的取值范圍是( 。
A.[$\frac{π}{12}$,$\frac{π}{4}$]B.[$\frac{π}{3}$,$\frac{5π}{12}$)C.($\frac{π}{4}$,$\frac{π}{3}$]D.[$\frac{π}{6}$,$\frac{π}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知數(shù)列{an}是首項為32的正項等比數(shù)列,Sn是其前n項和,且$\frac{{S}_{7}-{S}_{5}}{{S}_{5}-{S}_{3}}$=$\frac{1}{4}$,若Sk≤4•(2k-1),則正整數(shù)k的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在直四棱柱ABCD-A1B1C1D1中,底面ABCD為菱形,E,F(xiàn)分別是BB1,DD1的中點,G為AE的中點且FG=3,則△EFG的面積的最大值為( 。
A.$\frac{3}{2}$B.3C.$2\sqrt{3}$D.$\frac{{9\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設等差數(shù)列{an}的前n項和為Sn,若公差d=2,a5=10,則S10的值是110.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)$f(x)=sin2ωx-2\sqrt{3}{cos^2}ωx+1(ω>0)$在區(qū)間(π,2π)內沒有極值點,則ω的取值范圍為( 。
A.$({\frac{5}{12},\frac{11}{24}}]$B.$({0,\frac{5}{12}}]∪[{\frac{11}{24},\frac{1}{2}})$C.$({0,\frac{1}{2}})$D.$({0,\frac{5}{24}}]∪[{\frac{5}{12},\frac{11}{24}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)滿足一下兩個條件:①任意x1,x2∈(0,+∞),且x1≠x2時,(x1-x2)[f(x1)-f(x2)]<0;②對定義域內任意x有f(x)+f(-x)=0,則符合條件的函數(shù)是(  )
A.f(x)=2xB.f(x)=1-|x|C.$f(x)=\frac{1}{x}-x$D.f(x)=ln(x+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知x≥0,求證:x≥sinx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知集合U={x|x>0},A={x|x≥2},則∁UA={x|0<x<2}.

查看答案和解析>>

同步練習冊答案